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Hydrodynamics and transport coefficients for dilute granular gases
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The hydrodynamics of granular gases of viscoelastic particles, whose collision is described by an impact-
velocity dependent coefficient of restitution, which is developed using the Chapman-Enskog approach. We
derive the hydrodynamic equations and the according transport coefficients with the assumption that the shape
of the velocity distribution function follows adiabatically the decaying temperature. We show numerically that
this approximation is justified up to intermediate dissipation. The transport coefficients and the coefficient of
cooling are expressed in terms of the elastic and dissipative parameters of the particle material and by the gas
parameters. The dependence of these coefficients on temperature differs qualitatively from that obtained with
the simplifying assumption of a constant coefficient of restitution which was used in previous studies. The
approach formulated for gases of viscoelastic particles may be applied also for other impact-velocity depen-
dencies of the restitution coefficient.
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I. INTRODUCTION e=1— ClAa2/5gll5+ §C§A2a4’5g2/51 .

Granular systems composed of a large number of dissipawith
tively interacting particles behave in many respects as a con-
tinuous medium and may be, in principle, described by a set g=le-(v1—vy)|=|e-v1d. )
of hydrodynamic equations with appropriate boundary con-
ditions. Although this approach is successively used in variThe unit vectore=r,/r;, specifies the collision geometry,
ous fields of engineering and soil mechaniesg., Refs. g the relative positiomy,=r,—r, of the particles at the

1,2]) a first-principles theory for dense granular media is . . . . . .. . -
gtill]lacking. &ydropdynamicsymay be alsogapplied to muChcolhsmn instant. Their precollision velocities are givendy

simpler systems, such as rarefied granular gases. It has bedpdv2. The elastic constant

used to describe many different processes, e.g., rapid granu-

lar flows, structure formation, etésee Ref[3] for an over- (3 2y Ref
view). For these systems, the hydrodynamic equations are @=\2 mef(1—12)
not postulated but derived from the Boltzmann equation. The

corresponding transport coefficients are not phenomenologiepends on the effective mass and radnf§=m;m,/(m;
cal constants, instead they are obtained by regular methods,;m,), Re"=R,R,/(R;+R,) of the colliding spheres, on
such as the Grad meth¢d] or the Chapman-Enskog method the Young modulusy, and on the Poisson ratio of the
[5]. In most of the studies, which address the derivation oharticle material. The dissipative coefficieftis a function

hydrodynamic equations and kinetic coefficients, it was aspf dissipative and elastic constartsee Ref[19] for detalils.
sumed that the coefficient of restitutienis a material con-  Finally, C, is a numerical constarit.7,20)

stant, e.g., Refd6-13|.
This assumption simplifies the analysis enormously; how- Jm T(3/5

ever, it is neither in agreement with experimental observa- Clzmm

tions (e.g., Refs[14—16) nor with basic mechanics of par- 275

ticle collisions[17]. The coefficient of restitution depends on . . . L .
[17] P Equation(1) describes pure viscoelastic interaction. The

the impact velocityg and tends to unity for very smail As . : : T e .
a consequence, particles behave more and more elastically agsumption of viscoelastic deformation is justified if the im-

the average velocity of the grains decreases. The simple act vel_ocity is not too large to avoid plastic deformation of
collision model which accounts for dissipative material de- € pdar:tlc!es and né)t tc:/?/ srrallcl to negli_\ct\.j,\;;rfalce effects Sut%h t
formation, is the model of viscoelastic particles. It is as-2S adnesion, van der Waals 1orces, eic. We also assume tha

sumed in this model that the elastic stress in the bulk of th(I.‘he rotational degrees of freedom of pff‘”'c'?s may _be ne-

particle material depends linearly on the strain, whereas th lected and consider a granular gas of |dent|c_al_ particles n

dissipative stress depends linearly on the strain rate. the absence of external forces. Then the coeff|0|%nt oj resti-
Based on the fundamental work by Heft#], the inter- tution gives the velocities of particles after a collisiop, v5

action force between colliding viscoelastic spheres has bedf terms of their values before the collision:

derived[19]. Using this generalized Hertz law the coefficient

of restitution of viscoelastic particles can be given as a func- - - lte oo 5

tion of the impact velocity and material parametg26]: V1=Vt 5 (8 v ®)

()

~1.15344. (4
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The impact-velocity dependence of the coefficient of res- J . R . R,
titution implies serious consequences for the granular gasdy- Ef(vl,t)quj dvzf de®(—vy,e)|vio el
namics: For the simplified case=const, the form of the
velocity distribution functionf(v,t) is characterized by a X[xf(y f(os ) —f(vy,t)f(vs,1)]

time-independent scaled functic?rQE). It depends only on -
" Sed ) =I(f,f), (6)
the scaled velocitg=v/v, wherev(t)=2T(t)/mis the
thermal velocity andT(t) is the granular temperatuf€1l-  \hereg=2R is the particle diameter. The velocitie4 and
23]. The distribution function depends on time only via the -, denote the precollision velocities of the inverse collision
time dependence of the granular temperature, its shape li’sz_ P o oo . '
time independent. The small deviations of the velocity dis-Which leads to the after-collision velocities andv,. The
tribution function from the Maxwell distribution are deter- factor|v,,-€| characterizes the length of the collision cylin-
mined by the time-independent coefficient of restitution. Forder of cross sectiow? and the Heaviside step functidh

granular gases of viscoelastic particles, however, the effeq—y ;. e) assures that only approaching particles collide. Fi-
tive value ofe changes with time along with the thermal nally, the factory in the gain term accounts for the Jacobian
velocity v(t), which gives a typical velocity of the par- ¢ e transformation(; ,v’3) — (v1,v5) and for the ratio of
ticles. Therefore, the shape of the velocity distribution func- o _ oy s >
tion evolves in a rather complicated wEgA]. the lengths of the collision gyllndeltslz. e|/|vqo- €| for the
The time dependence of the velocity distribution functiondiréct and the inverse collision. For the case of s_pherzes col-
has to be taken into account when the hydrodynamic equé'—dr:'_”l'g fW'th_a colns:.ant cr]oeﬁ|C|enE[£]cif restitution _bllsE ’
tions and the transport coefficients are derived. Since thWhile for viscoelastic spheres, with=¢(g) given by Eq.
simple scaling is violated, the standard methods of kinetid1): it reads[24,27]
theory of gases, developed fog=const (e.g., Refs. . 25> P15, 6622 45> 21205
[10,12,29) must be revised. X=1+5CiAa™ vy e+ ZCIAZa v o e - -
As it follows from our analysis, the transport coefficients @
f_or gases of \(lscoelastlc particles depe_nd on temperature and ¢ dependence of on the impact velocity does not
time rather differently as compared with the caseconst.  gjow to derive from the Boltzmann equation a time-
C_:orrespondlngly,_ th? behavior of gases of wscoe_lastlc pari'ndependent equation for the scaled distribution funcfion
ticles differs qualitatively from that of gases of particles with Contrary to the case af=const[21—23, the scaled distri-
the smp_hﬁed collision mode.b;const. . Pution function depends explicitly on time. Therefore, we
We wish to remark that the impact-velocity dependence Ol rite for a oas of viscoelastic particles
¢ has been already taken into account in R&g] for the 9 P

hydrodynamic description of granular shear flow. In this n >
study, an empirical expression of the coefficient of restitution f(o,t)= fct), c=——, (8)
was applied and a Maxwellian velocity distribution was as- v3(t) vr(t)

sumed. Moreover, the authors have used the standard

Chapman-Enskog method without the modifications requiredVith the number density of the granular gasind the ther-

for gases of dissipatively colliding particles. These modifica-mal velocityv(t) defined by the granular temperature:

tions for the case of =const. have been extensively elabo- 3 5 3 2t

rated in Ref[10]. . . —nT(t)=f ™t n=n™i g
The aim of the present study is to develop a continuum 2 2 2 2

description of granular gases of viscoelastic particles. We ) o i

derive the hydrodynamic equations along with the transport Hence, the shape of the velocity distribution function,

coefficients and the coefficient of cooling. In the rest of thecharacterized by the rescaled functifc,t), does not per-

paper, in Secs. lI-VI, we discuss in detail the most importansist but evolves along with temperatJi&t,27. We wish to

case of the three-dimensional gases, while in Sec. VII, W&tress that the time dependence?()f,t) is caused by the

present the results for the two-dimensional systems, whicgependence of the factgron the impact velocity. Contrary,

are frequently addressed in molecular dynamics studies. for a gas of simplified particless(=const), we obtainy
=1/s2=const and, therefore, the rescaled distribution func-

Il. VELOCITY DISTRIBUTION AND TEMPERATURE tion is time independent(c,t) =f(c). S
IN THE HOMOGENEOUS COOLING STATE For slightly dissipative particles, the velocity distribution
function is close to the Maxwell distribution. It may be de-

A. Evolution equations for temperature and for the second scribed by a Sonine polynomial expansi@?22,23,2§
Sonine coefficient

In this section, we introduce the notations and briefly T 2
sketch the necessary results for the homogeneous cooling fle.)=¢(c) 1+,3§=:1 3p(1Sp(c%) |, (10
state; more detail may be found in Reff24,27).

The Boltzmann equation for a granular gas of viscoelastiavhere ¢(c)= 7~ 3%exp(—c?) is the scaled Maxwell distribu-
particles in the homogeneous cooling state rd2ds27| tion, Sy(x) are the Sonine polynomials
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So(x)=1,
Si(x)=—x+3,

x?  5Bx

15
SXN=5-5+g

g etc., (12)

anda(t) are thetime-dependenBonine coefficients, which
characterize the form of the velocity distributif28,24]. The
first Sonine coefficient is triviala, =0, due to the definition
of temperaturg¢22,23, while the other coefficients quantify
deviations of the moment&¥) of the velocity distribution
from the moments of the Maxwell distributidie®),, e.g.,

PHYSICAL REVIEW E 67, 061304 (2003

with 6=Aa?°TY'% and with the initial temperaturd,.
These expansions re§g4,27|

(18

where A,,, and By, are numerical coefficients. They may be
written in the compact matrix notatidinows refer to the first
index

(e =(c")o 0 0 0
. 12 6 21
0 i R
a=| “° 259 2500°
Thus, the first nontrivial Sonine coefficiea} characterizes 119 4641
the fourth moment of the distribution function. —w ——w, ————w
. .. . . . 1 1
For small enough inelasticitys=0.6), the distribution 400 640000
function is well approximated by the second Sonine coeffi-
cienta, [22,23,2§, i.e., higher coefficients, =0 for k=3 — 1
may be neglected. With this approximation the evolution a 0 4vem §V27T
granular gas of viscoelastic particles in the homogeneous o8 903 567
cooling state is described by a set of coupled equations for — x_ . —— o, _ w0
the granular temperature and for the second Sonine coeffi- 5 125 12500
cient[24,27: 77 476973 4459833
4T 2 10“* " 44000”* 70400000
Sr=—3BTR=—1T, (13 (19
with
8 2p 1+ A 14
gt~ 3Braltay) - 7eBua. (14 o 21
wo=22m2¥r 1o ~ 6485,
The coefficientB=B(t)=v(t)o?g,(o)n is proportional
to the mean collision frequency. The moments of the col 16
lision integral, u, and u, read with the approximatior wlzx/2w21’51“(§) C2~9.285. (20)

= H(O[1+ () S:(cD)]:
1 - - - e e s s
po= =5 06 [ 66, [ d60 (-1 8)cr e oicy

X{1+a,[S,(c) +S,(c3)]+a3S,(cT)Sy(ch)}
XA(ch+ch), (15)
where

Ag(c)=(c])—w(c) (16)

denotes the change of some functi¢(ﬁi) according to a
collision. The coefficients4, depend on time via the time

dependence o&,. For small enough dissipation, the mo-

The coupled equation§l3) and (14) together with Egs.
(17)—(19) determine the evolution of a granular gas of vis-
coelastic particles in the homogeneous cooling state. In par-
ticular, they define the velocity distribution function which is
the starting point for the investigation of inhomogeneous
gases.

In the limit of small dissipationg<1, the coupled equa-
tions (13) and (14) may be solved analytically. In linear ap-
proximation with respect t@ the solution read24,27

—5/3
T(t)_<l+l> |

T, (21)

7o

where we introduce the characteristic time

mentsu, andu, may be obtained as expansions in the time-

dependent dissipative parametgr,

1/10
8" ()=Aa”2T(t)]1%= 5[2(0} ; 17
0

-1 16 1 48 > 7TTO
To IEQO(STC(O) :€q0540' n ?, (22)

with the initial mean collision timer,(0) and the constant
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ver[ 211 Cq 0
q0=2 T 1_0 ?%0173 (23) L 62_ 091 ___________
0.5
Correspondingly in linear approximation, the second Sonine - ‘-\
coefficient depends on time §24] O@ ik
= .
e S - Ny
ap(t)=—Fw(t) "HLiw(t)-Li(w(0)}, (24 )
RN 8=0.05
with ~.
2 ettt -
t |16 0 5 10 15
w(t)zex;{(qoé)‘l 1+ T—) } (25 (@) time [T ]
0
. . . . O
and with the logarithmic integral 3
k $=0.1
x 1 -l‘\-\——— ___________ ]
Li(x)= J ——dt. 26 .
( ) 0 In(t) ( ) $ I \_
g 2t
For small dissipatiors, the time dependence af, reveals — \
two different regimes(i) fast initial relaxation on the mean Al \-\
collision-time scale~ 7.(0) and(ii) subsequent slow evolu- i N
tion on the time scale- 70> 7,(0), i.e., on the time scale of I Sl
the temperature evolution. Therefore, the coefficentand 5 . L \"-"“1'0'_"'—'_1"5—
hence the form of the velocity distribution functjoavolves b) time [t ]

in accordance with temperature. As we show below, the lin-
ear theory being rather accurate for small dissipation looses
its accuracy with increasing (see Figs. 1 and)2It may be,
however, successively substituted by the adiabatic theory, ad-
dressed in the following subsection.

B. Adiabatic approximation for the second Sonine coefficient

100 a

For the hydrodynamic description of granular gases, we
assume that there exist well separated time and length scales. I
The short time and length scales are given by the mean col- N
lision time and the mean free path, and the long time and - N i
length scales are characterized by the evolution of the hydro- 0 ‘ 5 10 15
dynamic fields(to be defined in the following sectiprand (c) time [t ]
their spatial inhomogeneities. The hydrodynamic approach
corresponds to the coarse-grained description of the system, FIG. 1. Evolution of the second Sonine coefficient in the
where all processes which take place on the short time anlibmogeneous cooling state on the short time scale. Solid line, nu-
length scales are neglected. Therefore, the first stage of tHeerical solution of Eqs(13) and (14); dashed line, adiabatic ap-
relaxation of the velocity distribution function does not affect Proximation Eq.(28); dot-dashed line, the result of the linear
the hydrodynamic description and only the second stage dheory, Egs.(24) and (25). The time is given in collision units
its evolution on the time scale,> 7,(0) is to be taken into 7¢(0).
account. To this end, we apply an adiabatic approximation:

We omit the termda,/dt in the left-hand side of Eq14) 3wg
which describes the fast relaxation and assume dhais =~ 2027

. a
determined by the current values gb and u, due to the
present temperature. Hence, in the adiabatic approximation,
a, is determined by

Sua(l+az) —us=0. 27

~ —0.388,

12063 w3 27 w;

8.22sz7 + ZO\/T_WNZ.752. (28

_ _ o Figures 1 and 2 show, in adiabatic approximation due to
Using Eq.(18) for u,, u4, We finda, as an expansion inthe Eq. (28) together with the numerical solution of Eqd.3)

small parameteb’: and (14) and the results of the linear theory, E¢g4) and
(25). The adiabatic approximation is rather accurate for small
ay=ay, 6" +ayd 2+ -, dissipation,5§<0.05, after the initial relaxatiof6—10 colli-
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4 46=0.01
2 -
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(@) (a) time [ ]
0
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o
=
2+
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(b) time [1 ] (b) time [t ]

FIG. 3. Same as in Fig. 1, but for different initial valuesagt

The fast relaxation takes place during the first 5—10 collisions, in-
dependently ora,(0).

mation yields very accurate results for the evolution of tem-
perature. It coincides almost perfectly with the numerical
solution for the short and for the long time scales and for all
values of the dissipative parametex®<0.2 (see Fig. 4.
Thus, we conclude that the adiabatic approximation may be
applied for the hydrodynamic description of granular gases.
By means of Eq(28) for the second Sonine coefficient, we

T R R TSI can determine the momenis,, w4, and the cooling coeffi-
10° 10" 102 1 3 10° 10 cientz NS, pg g
(© time [Tc] '
P ; ; ; 2 2 /2T
FIG. 2. Same as in Fig. 1, but for longer time. The adiabatic (=2 1,B==\ "o w8 — 0,82+ ---), (29
approximation improves as the system evolves. 3 K2 3 m 0 2 '
where

sions per particlehas passed. Even for the larger dissipation

(6=0.2), it is in agreement with the numerical result. This 9 >
value of the dissipative parameter corresponds to the initial W=+ ——w> \/> (30)
coefficient of restitutione~0.75 for the thermal velocity. 500 T

The adiabatic approximation becomes more and more accu- ) o ]
rate as the system evolves. Contrary, the linear theory fails Below we will need the derivatives @, and { with re-
with increasings and becomes qualitatively incorrect for SPect to temperature and density. Using

larger 8. In Figs. 1 and 2, the evolution of the system has

started from a Maxwell distribution, i.ea,(0)=0. Figure 3 L‘S, _ i, (31)
shows the relaxation of, from certain initial conditions T 10°

a,(0)# 0 which correspond to non-Maxwellian distribution

functions. The relaxation occurs during the first 5—10 colli-according to the definition oé’, Eq.(17), we obtain
sions per particle for all considered values &f Then the

adiabatic approximation becomes valid even for intermediate dag 1 ayd + Eazz(yz, (32)

values of the dissipative parame&@rThe adiabatic approxi- 9T 10 5
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is the Maxwell distribution, while for granular gases the ba-
sic solution is the time-dependent velocity distribution of the
homogeneous cooling state.

For gases of particles in the homogeneous cooling state,
which collide with e =const, the velocity distribution func-
tion depends on time only through the time-dependent char-
acteristic velocity. The shape of the velocity distribution

function, given byf, is fixed bye and does not depend on
time. Hence, the evolution of temperature describes the evo-
lution of the velocity distribution function exhaustively. For
0 5 0 13 20 granular gases of viscoelastic particles the shape of the ve-
locity distribution function, characterized by the Sonine co-
efficientsa,, is time dependent due to the time dependence
of these coefficients. In the preceding section, we exempli-
fied this property for the first nontrivial coefficiemt,(t),
assuming that for small dissipation higher coefficients may
be disregarded. Therefore, the evolution of granular gases of
viscoelastic particles is described by the time dependence of
temperature, i.e., by the second moment of the velocity dis-
tribution function and by the time dependence of its higher-
order even moments which are characterized by the Sonine
coefficientsa,, a3, etc.[see Eq(12)]. Hence, the hydrody-
namic description of granular gases whose patrticles collide
5 ~ = L L L with e=¢(g) requires an extended set of hydrodynamic
(b) timeO[T] 10 fields which includes the higher-order moments. A regular
¢ approach to derive hydrodynamic equations for this extended
FIG. 4. Evolution of temperature in the homogeneous coolingSet Of fields is the Grad methdd]. Alternatively, for small

state on the short time scalep) and for longer timgbottom. The  dissipation an adiabatic approximation can be applied: It is
notations are the same as in Fig. 1. The dotted line shows thassumed that the shape of the velocity distribution function,

asymptotic power law at— . albeit varying in time, follows adiabatically the current tem-
perature. Correspondingly, the higher-order moments are de-
a 2 (3 L7 " termined by the temperature too. With this approximation a
T7=3Blg5®@od" — w20+, (33 closed set of hydrodynamic equations for denaity, t), ve-

locity u(r,t), and temperatur&(r,t) may be derived. These
a1 ) fields are defined, respectively, by the zeroth, first, and sec-
on n° = (34 ond moments of the velocity distribution function:

Ill. HYDRODYNAMIC EQUATIONS AND TRANSPORT n(r,t)=J dvf(r,v,t),
COEFFICIENTS

A. Hydrodynamic fields and hydrodynamic equations .. e o
For the derivation of hydrodynamic equations, from the n(r,t)u(r,t)—f dovf(r.v,0),
Boltzmann equation it is assumed that there exist well sepa-
rated time and length scales. As already briefly discussed in 3 1
the preceding section, in granular gases there(ardeast _n(F,t)T(F,t)zf do=mVAf(r,v,t), (35)
two sets of scales. The microscopic scales are characterized 2 2

by the mean collision time and the mean free path. The mac-

roscopic scales are given by the characteristic time of th@vhere\?sﬁ—ﬁ(ﬁt). For small dissipation, the velocity dis-
evolution of the hydrodynamic fields and the size of theiryyution is well approximated by the second Sonine coeffi-
spatial inhomogeneities. Hence, scale separation means ”@éntsaz(t), i.e., higher-order coefficients are neglected. In

the macroscopic fields vary very slowly in space and time ify jiapatic approximationa, is determined by temperature

measured in the microscopic units. This assumption allow%tccording to Eq(29).

for a gradient expansion in space and time, i.e., the applica- Multiplying the Boltzmann equation for an inhomoge-

tion of the Chapman-Enskog methffl. neous gas
The application of the Chapman-Enskog approach to

granular gases is more sophisticated than its application to

molecular gases: For molecular gases the unperturbed solu-

tion (the basic solutionfor the velocity distribution function

Jd L o N
E-ﬁ-vl-V)f(r,vl,t):I(f,f), (36)

061304-6
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Corresponding|y byvg, 511 mo 5/2’ and integrating over Sllghtly different, we wish to sketch in the rest of this section
the derivation of the above relations.

du,, we obtain the hydrodynamic equatiofsee, e.g., Ref. The Chapman-Enskog method is based on two important

5D assumptions: The evolution of the distribution function is
on . . completely determined by the evolution of its first few mo-
E%—V'(nu):o, (377  ments, i.e., it depends on space and time only through the
hydrodynamic fields:
.o .. F o0 =f0.n(F.t).G(F .
As the second precondition, it is assumed that the gas is only
P o o slightly inhomogeneous on the microscopic length scale
Y +u-VT+ 3—(P:Vu+V -q)+{T=0. (39)  which allows for a gradient expansion of the velocity distri-
n bution function
The cooling coefficient in the sink term{T may be written F=fO L \FD 4 \2f@ 4. .. (45)
as
5 where each powek of the formal parametex corresponds
L(F )= o mj 4 JdJ fdé@ to the orderk in the spatial gradient. Thu$(? refers to the
AT ! 2 homogeneous cooling staté{’) corresponds to the linear
o approximation with respect to the fields gradierité) is the
X(—vip€)|vief(rug,t) solution with respect to quadratic terms in the field gradients,
.- - s, ) etc. With these assumptions the Boltzmann equation may be
XF(rvz,t) (v €)%(1—€%). (40 solved iteratively for each order in, together with the hy-
. R ) drodynamic equations for the moments of the velocity distri-
The pressure tensét and the heat flux| are defined by bution function. The solution in zeroth order inyields the
velocity distribution function for the homogeneous cooling
Pij(th):f Dij(V)f(F,J,t)d5+p5ij, state f(®) and the corresponding evolution of temperature.

The functionf(® is then used to compute andq, yielding

P©=5,p, q®=0, and the hydrodynamic equations for the
ﬁ(F,t)zf S(V)f(r,v,t)dv, (41 ideal fluid. These first-order equations contain only linear

gradient terms. Thef® may be found employing the first-
order hydrodynamic equations and the distribution function
(O, The obtained ) as well as the corresponding expres-

sions forP™) andq™ are linear in the field gradients:

wherep=nT is the hydrostatic pressure. The velocity tensor
D;; and the vectoS read

1
(W=ml V.V — Z 8.2 2 ..
D”(V)_m(v'vl 3%V ) 42 Pij=pdij = n| Viuj+Viui—3;V-u/,
.- (mV* 5. - s >
S(V)E(T—ET V. (43) q=—«VT—uVn. (46)

) . The transport coefficients, «, andu in these equations are
The structure of the hydrodynamic equations, except for th%xpressed in terms of). Hence, within the Chapman-
cooling term{T, coincides with those for molecular gases. gnskog approach for each order in the gradient expansion a
closed set of equations may be derived. Keeping only the
B. Chapman-Enskog approach first-order field gradients for the distribution function and,
respectively, for the pressure tensor and for the heat flux as in
Eq. (46), the Navier-Stokes hydrodynamics is obtained.
Keeping next-order gradient terms corresponds to the Bur-
Yett or super-Burnett description. We will restrict ourselves
to the Navier-Stokes levgéB0] and skip for simplicity of the
notation the superscript(1)” for P andq in the above equa-
tions.
The Chapman-Enskog scheme also assumes a hierarchy
of time scales and, respectively, a hierarchy of time deriva-

The system Eqs(37)—(39) is closed by expressing the
pressure tensd?;; and the heat fluxi in terms of the hydro-
dynamic fields and the fields gradients. To this end, we appl
the Chapman-Enskog approadb]. Application of this
method to dilute granular gases with a constartas been
elaborated in detail in Ref10]. Following the same lines as

in Ref.[10] one can obtain relations fét;; andq, Egs.(46),
with the transport coefficients, «, w, given by Eqs(75)—

(77) which are expressed in terms of functioas S, Yii s tives

these functions are, in turn, the solutions of E@8)—(70).

Since our notations differ from that of Ref10] and the J 8(°)+}\&(1)+)\28(2)+ “
corresponding equations for the functions B yij are ot ot at at '
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where each orderin the time derivativeg®/gt=o, cor- Since the distribution functiorf® is known, we can
responds to the related order in the space gradient. Consevaluate those terms in E(52) which depend only ori(®:
qguently, the higher the order in the space gradient, the slower

is the according time variation. Using the formal expansion an (0)_3f(°) dPn L
parameten, we can write the Boltzmann equation Wﬂjl' f at tv1-Vn

g0 5 9f (0 (3(1)5 R ﬁ)
4+ —

an

et AN— AU -V [(fO @M. .. .
ot +A ot + 7\()1 \Y (f +Af 4 ) (—),J p +Ul Vu
=I[(FO+NfD 4. (FO+NfD 4. )], 9F0) [ g(1) o

and collect terms of the same order X\n The equation in

With v,=V+U, the time derivatives ofi, u, andT given in
zeroth order,

Eq. (54), and the relations
O]

2 £0)—(£(0) £(0) 9@ 1 PO 9f(0)
o f | (£(0,§(0), (49) HO Lo MO A 56
an n Ju N

coincides with Eq.(6) for the homogeneous cooling state.
According to the Chapman-Enskog scheme, we obtain thehich follow from Eq.(50), we recast Eq(52) for f() into

velocity distribution function in zeroth order the form
- - n(r,t) A 1)/£(0) £(1 RYTER YR vi
fO@,r )= 5 =—[1+a,S,(c)]d(c),  (50) +IBFO fO)=fO(V.u=V-Vinn),
vy(r,t)

... - of@ (2 .
where c=(v—u)/vt=V/vt. The corresponding hydrody- +?(§TV u—V~VT)
namic equations in this order read

of© 1
9 90 9 o +W((V-ﬁ)ui—mVip),
Son=0, —-i=0, —T=—{OT, (51 .
(57)
where(® is to be calculated using E¢0) with =), In _ .
this way, we reproduce the previous reg9). where we take into accougt!)=0.
Collecting termsO()), we obtain The right-hand side is known since it contains off§). It

is convenient, however, to rewrite it in a form which shows

PO 1O RN explicitly the dependences on the fields gradients. Employ-
n +(—+v1~V)f(°)+J(1)(f(°),f(1))=0, (52) ingp Y P J Py

ot

. 1 T T
where we introduce S Vip=—WiInT+ —¥inn, (58)
—JO(FO), 10N = (£, £09) 41 (£0,£O), (53

o ) ) the right-hand side of E(q57) yields
The corresponding first-order hydrodynamic equations read

HO(1) Lo .
oWMn — _$ni) S +ID(FO f1)=A-VInT+B-VIinn+Cy;Viu;,
at ’ (59
oMa L 1. with
T UV RYR
Lo . of©® T 51O
T2 AVI=NT = (60
=—Uu-VT—-TV-u—¢MT. (54)
ot 3
. L . - o - T
The term¢™) is found by substituting= f(©+ \ 1) into Eq. B(V)=—VfO— — if(o), (61)
(40) and collecting terms of the ordéd(\). These terms m ov

contain the factorf@(v,r,t)f(v,r,t) in the integrand. ©
They vanish upon integration according to the different sym- C. (V)= i(v-f<°>)+ 2_T§“ of 62
metry of the functiond® andf®), thus,;(*=0 [31]. g oV 37 gT
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We will calculate these terms below. From the form of the

- - : - _ /072 350 = 70
right-hand side of Eq59), we expect the form of its solution =+ (7)) =Cyj (70

fM=a.-VInT+4-VInn+y;Viu, (63)

whereJW) is defined by Eq(53).
which is the most general form of a scalar function, which

depends linearly on the vectorial gradieﬁti, Vn, and on
the tensorial gradient§u;. The coefficientsz, B, andy;;
are functions ofV and of the hydrodynamic fields, u,
andT.

We derive now equations for the coefficients ,é and
v by substitutingf*) as given by Eq(63) into the first-
order equationt59) and equating the coefficients of the cor-
responding gradients. To this end, we ne#df® and,

therefore, the time derivatives of the coefficiedts,é, and
Yij »

Oa  ja a‘O)T da d%On  ga sy, da
4+ — — g(O)T_

gt aT ot Ton ot Tou at aT’
(64)

where we use Eq$51) in zeroth order. Similarly, we obtain

OF 3
TB__ g(O)T%
at aT’

Oy _

o2y
ot 4

o 69

and, respectively, the time derivatives of the gradients

30
WV Inn=0,
90
o =0,

50

R R 9¢© 9¢©
7VInT=—V§(°)=—( — )V —( )VT (66)

The derivatives ot® are given by Eqs(33) and(34). From
Egs.(64)—(66), we obtain

_(+? a

( é'(O)T B

PIOMED
at

g(O)
(9T

VinT

7|JV
Ui

(67)

where we use Eq34). If we inserta{”f() into Eq.(59) and

+{Oq ) Vinn—7OT

C. Kinetic coefficients in terms of the velocity distribution
function

From the definition of the pressure tensor El) and its
expression in terms of the field gradients, E4p), follows:

f Dij(fO+a-VInT+8-VInn+ y,Viu)dV

2 ..
ﬂ(Vin+VjUi_§5ijV'U , (71)

where the tensoDij(\7) has been defined above. The inte-
grals

vanish sinceD; is a traceless tensor aéf) depends isotro-
pically onV. Moreover, as will be shown below, the vectors
a and B are directed alony/, hence, the respective inte-

grands are odd functions . Therefore, only the term with
the factory, Viu, on the left-hand side of Eq71) is non-
trivial. Equating the coefficients of the gradient fackgu,,
we obtain

N 2
f DijydV=— 7]( 8 Oj+ 8 6ki — 3 Jij 5k|) . (73

Fork=j, I=i, the last equation turns into

N 2
J D”’y”dV: - 77( 5”5“'1' 5” 5” - §5|]5|]) = —1077
(74)

(6ii6j;=9 and §;;6;;=3 according to the summation con-
vention and yields the coefficients of viscosity

1 - I
_Ef Dij(V)y;i(V)dV. (75

Using Eq.(41) for the heat flux and its corresponding expres-
sion in terms of the field gradients, E@6), we can perform

equate the coefficients of the gradients, we arrive at a set af completely analogous calculation and arrive at the kinetic

equations for the coefficients, 8, andy;; ,

(0)
—T§—a+J(1)(f(°),&)=A, (68)

o - B
_g(o)-l—ﬁ_5(0)0[4_‘](1)(]‘(0)”8):8, (69)

coefficientsk and u,

dVS(V)- a(V), (76)

K= —

3T

1 L. s
M=—3—nf dvs(V)-B(V), (77
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with S defined by Eq(43). The coefficient of thermal con- Where y, is a velocity-independent coefficient, i.e., we ne-
ductivity « has the standard interpretation, while the otherglect the dependence of; on a, [32]. The viscosity coeffi-
coefficientu does not have an analog for molecular gases. cient Eq.(75) reads then

1
IV. COEFFICIENT OF VISCOSITY n=— Yo

10?J d\7D|]D|JfM:_’)/0nT, (85)
The viscosity coefficient is related to the coefficient .

[see Eq.75)] which, in turn, is the solution of Eq. 70 with Wwhere we take into account that

the coefficientC;; on the right-hand side. Let us first find an 2 o

explicit expression foC;j; . DijDji=sm?V (86)
According to Eq.(50), the velocity distribution functlon according the definition ob;;, Eq. (42), with the summa-

depends on temperature through the thermal velecitand 5y convention. Moreover, we have used the fourth moment

additionally through the second Sonine coefficiemt.  of the Maxwell distribution. From Eq85) it follows:
Hence, the temperature derivative fé) reads

n
gf©@ 1 K2 Vf(°> oy ) 28 Yo= T T (87)
5T ; WS 2, (7
Multiplying Eq. (70) by Dj;(V,), integrating oveV; and
with fy,(V) being the Maxwell distribution using Eq.(75) yields
n ; 1 2 027 _ > > -
M=U—3¢(C) with  (c)= —exp(—c?). (79) — 1067 =— | dViD;j(V1)Cyi(V2)
T
Using the relation +f d\71Dij(\71)J(1)(f(0)',yij). (88)
af©® v, 5f©
NV v (800  To evaluate the first term on the right-hand side, we use Eq.
i (62) for C;;, the relation
and Eq.(78), the coefficientC;; reads 9 P
. —D;; ViV,— 5--v2>=mv(1+ 5),
Ci (V) NV, ( ) )
(89)
1. ,|1af@ ) da, . _
= ViVj—gﬁijV vV v +§5ij82(c )fM(V)Tﬁ. the definition of temperature, Ed35), and notice that
Dij8ij=0 sinceDj; is a traceless tensgsee Eq(42)]. Inte-
(81)  gration by parts then yields
With > 0
f dV;D;;C;; fdvl i3 vljf< )
1 6f© 5 5
vV oy~ TlltaSi(c )fu+ =| c? 5 afy, o)
(82 +_ dVyD ij O T
we obtain - 1
Cij=— =Djj| 1+a,| Sy(c®)+ 5 —c?| |[fu(V)
T 2 100 )
=3 f dV,f@mVi=10nT. (90)
2 2 (932
+§5i152(0 )fM(V)Tﬁa (83

For the second term on the right-hand side of Bf), we

. use the definition 08", Eq. (53), and obtain
whereD;;(V) has been defined in E¢42).

The expression foCj; determines the right-hand side of
Eq. (70) for y;; and hence, it suggests the form fgg . For
small dissipatioiwhena, is smal) and for small fields gra-
dients, we keep only the leading terms with respect to these :_f V.D: [ (FO 4. _f ViDiil (v fO
variables. Therefore, we seek fgy; in the form VD (175, vj) dVaDijl (i £

f d\71D|JJ(l)(f(O),’y”)

91
> _E B >
7 (V)= F D (VT (V), @Y e apply the property of the collision integia]
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J dleijl(f(O)a')’ij):J d\71Dij|(7ij ) szwl(

PHYSICAL REVIEW E 67, 061304 (2003

97 679
) . (98

165 440002

2
= %f d\71f d\72f(0)(\71),yij(\72) Substituting Eqs(90), (95), and(97) into Eq.(88) and using

xj 460 (=, 6)[Vy, 6] A

X[Djj(V1)+Djj(V)], (92)

Eq. (29) for (%), we obtain an equation for the coefficient of
viscosity 7:

12y 07
(0o — 0,8 2)T&—T

where Ay(v;)=y(v/)— ¢(v;) denotes as previously the 3 31 /mT

change of some quantit&(z;i) due to a collision. Equation

(92) turns then into

— r_ 2y N
—5(W0+W15 Wy8" %) 5 2\

(99
dV.D:: JD£O) .. We seek the solution as an expansion in termg’of
1Yij ( -‘)’u)
- - - - 7= no(1+ 8 1+ 8" Fppt -+ -). (100
=—o* J dv, J AV, O(V) (Vo)
The solution in zeroth order
xf ded (— V12 €)1z €[A[D;j(V1) +Djj(V2) . . \/m»T
(93 T 1602 N (1o

We write the factors in the last integral using the dimension

less velocitiesV1,=v1Cy

is the viscosity coefficient for a gas of elastic particiEs-
skog viscosity, while the coefficients;;, and 7, account for

R R 1 the dissipative properties of viscoelastic particles. With Eq.
Dij(V):mv$Dij(c)=mv$(cicj— §5ijcz), (31), the temperature derivative of the viscosity coefficient
reads
S _ Yo[ N 2n (2 in 1 3 . 7 .
%ij(V)==—| — | mutDjj(c) &(c), (99 o 4 28—t
ij T v-3|- Tij T&T 7o 2+55 7+ 105 7+ . (102

and recast Eq(93) into the form

We substitute Eqg100) and(102) into Eq. (99), expressa,
in terms of 8’ according to Eq(28) and collect terms of the

f dVyD;; (V) IM(FO), ) =45vnaQ,, (95  same order ins’. This yields the equations faj,, 7,, etc.,

where we substitutg,= — »/nT and where(,, is a numeri-

whose solutions read

cal coefficient defined by ~ 359 27
771:?4_07“)0%0-4831
0,= [ dé, [ ac, [ aeo(~c1r 616, &TOcy 2
- 41881 w2 567 w,\2mw
X $(C2)Di;(C2) A[Dy (6)+ Dy (€)1, 96) 72733040007 28160 ~0.094, (103
The coefficient(),, may be expressed in terms of the dissi-with w,; given by Eq.(20).
pation parametep’ and the second Sonine coefficieay Thus, we arrive at the final expression for the viscosity

(see the Appendijx

Q,=—(Wo+8'w;— 8"2wy), (97)

with

1
W0:4\ 27T( 1_ 3_2a2

W1: w0<

11
15~ 50072

coefficient for a granular gas of viscoelastic particles,

5 mT
7 7(1+0.48$’+0.0945’2+ ce).

" 1602
(104)

In contrast to granular gases of simplified particles (
=const), wherenx T, for a gas of viscoelastic particles
there is an additional temperature dependence due to the
time-dependent coefficier®t' .
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V. COEFFICIENT OF THERMAL CONDUCTIVITY
AND THE COEFFICIENT u

To find coefficientsk and x, we need the coefficients
and B which are the solutions of Eq$68) and (69). The

functions A and B on the right-hand sides may be found
from Eqgs.(60) and (61):

Ny 2 2
~ 5 SV +ay{Sy(c?) + 1~ cHfy

—VS,(c 2) 5'+?5'2 (105

fums

. Ap- -
B=S(V)fy (106)

PHYSICAL REVIEW E67, 061304 (2003

2

© 5 0
4mnp? J c4¢>(c)(cz—§ dc+a2f c*¢(c)
0 0
, 5\7c* 7¢? . 23 g’
“\¢72) |27 2 Telee
15 15, 15n
= vaT+ > Nuvta,= (1+2a2) (112
where integration over the angles has been performed and
the integral
w (2k—1)!!
fo exp( —x?)x%kdx= T\/; (113

was used. Very similar calculations give the second term in

Keeping only Ieadmg terms with respect to the gradients an¢gq (111):

a,, we choosex in the form

- (LR
a=— =SV fy(V), (107)

with a4 being the velocity independent coefficient. This an-

satz fora yields the coefficient of thermal conductivity

K=—37 dVS(V) a(V)
L ag .[mV? T z nT 108
Tl Mz T VivT g e (108

which implies

2m

IW_K. (109)

ay

Multiplying Eq. (68) for a by S(V,)/T, integrating ovei/,
and using Eq(76) for x, we obtain

10 .. B,
g(°>KT— folv1 A—?J dV;S- IV q).
(110

To evaluate the first term on the right-hand side, we use Eq.

(43) for S(V) and Eq.(105) for A(V):
1 as s s
- Tf dVS(V)-A(V)

5 2
—va dV(c ——) c’[1+a,{S,(c?) +1—c?}]fy

2

> 5| la
+U$J dV( c?— 5) c? ==

105+

SACDLY

(11D

722 o2
55

With the Maxwell distribution equatiofv9), the first term in
Eqg. (111 reads

15
4

o[ @21 '
Eé

522 5'2) . (114

Summing up Eqgs(112) and(114), we obtain the first term
on the right-hand side of Eq110):

—nv?

21

(115

The second term on the right-hand side of Ed.O) may be
again written using the basic property of the collision inte-
gral[see Eq.(92)]:

1( - - -
— ?f dV,S(Vy) - ID(FO) a)

o2 N - - - - -
?f dvlf dV2f(°)(Vl)a(V2)-fde

X0 (—Vi,€)|Vip e[A[S(V1) +S(V)]. (116
Using the dimensionless variables
. .- 5\ .
S(V)=vrTS(€)=v1T| >~ 5 c,
- - n 5 s
a(V)=—awr| = | $(c)S(c), (117)
vr

and Eq.(109 for a4, we recast the last equation into the
form

10 .- R 4
—ff dVS(V)-J(l)(f(O),a)=—gKan(rZQK.
(118

The coefficient() . is defined by

061304-12
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R R R . veals an additional temperature dependence as compared
QKEJ dclf dsz ded(—cye)|cie[fO(cy) with gases of simplified particles whese= const.
The evaluation of the coefficient may be performed in
X p(C2)S(Co) - A[S(c1) +S(C2) ] (119  the same way as, i.e., choosings in the form
This coefficient readésee the Appendjx = Biz, -
ee e App B=— 25D (W), (127
Q,.=—(Ug+8u;—8"%uy), (120
where with the velocity independent coefficieft;. The only dif-
L ference is that the expansion @fin terms of the dissipative
N - parametew’ lacks the term in zeroth order singevanishes
Uo=4v2m| 1+ 32az ’ in the elastic limit. Since the calculations are completely

analogous to that fok, we present here only the final result

(17 9
U= wo| =~ £an22 Kol ~
5 500 /J,=%(5/,u,1+5/2,u2+“'), (128
_ 1817 1113 12
2= 1) 220 ~ 35200072/ (12D with
Substituting Eqs(115), (118), and(120) into Eq. (110 and ~ _1wov2m o
using Eq.(29) for {9, we arrive at #1780 e
Jd 1/ 58813 1
T—=kT¥( 08 — 8%+ ---) = 2, — ~
T (wo 2 #2=—|520000"0* 40\/2770)1 1.415. (129
— EKT3’2(uO+ 8'Uy— 8" 2yt - ) Thus, the coefficieniw reads in adiabatic approximation
— KOT ’ 12
% oz Vam|TT 0% T 50T | | g
Finally, using the coefficients
(122
_ _ _ _ 2m - 2m B 131
We solve this equation with the ansatz =TT ﬁl_ﬁﬂx Yo= T T (131
k=ko(1+ 8" k1+ 8 %Kot - -), (123 . .
(the result forB,; may be derived analogously as fex) in
where the relations Eqs(107), (127), and (84) for @, B Yij,» we
75 T obtain an expression for the first-order distribution function
o= — 124y  f®), which depends linearly on the field gradients according
== (124
640° ¥ ™M to Eq. (63).

is the Enskog thermal conductivity for a gas of elastic par-

ticles. Substituting Eq(123 into Eq. (122 and equating VI COOLING RATE

terms of the same order i, we obtain the coefficients As it was already mentioned the cooling rafein the
5 zero-order approximation with respect to the fields gradients
= 487 waomo_ggg, £ coincides with that for the homogeneous cooling state,
6400 Eq. (29), while the first-order coefficiens® is zero due to
- 1(2872113 , 78939 the different symmetry of the functiorf§?(V) andf®)(V).
%2=—| 51200008°° " 120800 2™ @1| ~4-904. For consistency of the hydrodynamic equations, which con-

(125 tain the second-order terms with respect to the fields gradi-
ents, it is necessary to include the second-order terms into
Hence, the coefficient of thermal conductivity for a granularthe cooling rate{ [10]. These coefficients appear in the
gas of viscoelastic particles reads in adiabatic approximatiosecond-order cooling coefficient

75 T , )2 5 o’m - - - .
k= s\ L+ 0399 49085724 . ), / ):121TJ dvlf dvzf 480 (— 0 1 8)|0 13- &)
(126

X[F (1) i D(0,)+21O(w) 1P(v,)]

Similar to the viscosity coefficient, the coefficient of thermal L
conductivity of a granular gas of viscoelastic particles re- X(v1,-€)%(1—¢?), (132
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where the dependence prand ont is suppressed for brevity.
From the symmetry requirement§? depends on the fields
gradients as follow$10]:

(= V2T + L9204+ (V)24 {4(VT)?

+Z5(VT)- (V) + Z6| (VU (Viup) + (Vu)(Viu;)

2 .. .
—a(V~u)2 +{7(V-u)?, (133
whered=3 is the system dimension and the coefficief\ts
(k=1,2,...,7) may becalculated, provided the functions
O, £ andf® are known. Whilef(® andf(*) are given,
respectively, by Eq(50) and Eq.(63) with Egs.(84), (107),
(127, and (131), the functionf® is still to be found. To

PHYSICAL REVIEW E67, 061304 (2003

0= [ aé, [ dc, [ deo (¢ 8lc.r
xFO(cy) p(co)(Crr€)7Sy(ch)(1—6%). (139
This coefficient readgsee the Appendix

12 21
25 6252

119 4641

W_ ,_ (119, 4641
& o0 (200+ 160 0002

The coefficients{; and {,, which correspond to the linear
part of £(?) with respect to fields gradients have been derived
in Ref.[10] for the case of a constant restitution coefficient.
The authors conclude that these coefficients may be ne-
glected fore =const, if the inelasticity is not large. Follow-
ing the approach in Ref10], we briefly sketch the deriva-
tion of these coefficients for the case of viscoelastic particles;

derive f®) one needs to solve the second-order equation ofnore detail may be found in R€f33], where the derivation

the Chapman-Enskog perturbation scheme:

J0§2) §2)§0)

ot

+I@(FO £ 1

o L
:|(f(l),f(l))—{y+U'V+V-V}f(l).
(139

Here, we consider only the part of the functi6ff) which
contributes ta;®). This part, which we denot&?® does not

contain vectorial or traceless tensorial functions of the veloc- -
ity, since this part of the function will vanish after integration

overvy, vy, €in Eq.(132 [10]. Thereforef?) has the form

f)=B,V2T+B,V2n+By(VT)2+B,(VT)?

+Bs(VT)-(Vn)+Bg| (Viu)(Viu))

+(Viup (Vjuy) — +B7(V-0)%, (135

2 .
—(V-01)2
3(V-u)

where the coefficient®, are scalar functions aof, T, and
V2. Moreover, they must be orthogonal to ¥, and V2,
according to the Chapman-Enskog schefig Therefore,
their lowest-order Sonine expansion reig]

B(n, T,V)=b(n, T)S,(c?)fwu(V), (136)
where, as previouslyc=V/v;. With the substitute Eg.
(136), we can express the coefficierfisin terms ofb, . For
example, the first two coefficientg and ¢, read

4=BOMby,  =B0Mh,, (137

whereB has been defined in E(L3) andQ{" is the numeri-
cal coefficient

of other coefficients, k=3, ...,7 isalso given.

Substituting into Eq(134) the expression fof ¥, Eq.
(135, and for fM), Eq. (63), and collecting terms corre-
sponding to the same field gradients, we obtain a system of
equations for the function®,(n,T,V) k=1,...,7. The
coefficientsB,; and B, correspond to the linear part cbf)
with respect to the fields gradients. Therefore, only the term
V-Vf® on the right-hand side of Eq134) contributes to

the equations foB; andB, [10]. Moreover, due to symme-
try requirements only the part

m 5> >
3 (kV2T+uV2n)S-Viy (140
n

of the termV- V() contributes to the cooling coefficient
{? and should be taken into accousee Refs[10,33 for
detai). The equations foB; and B, then decouple from
those for the other coefficien®,:

(0)
§(0)+T§_

9B,
) gl = B,+1(f®B))

© of(@
+1(Bq,f )+§1T(?_T

2 Taf(O) all fuS-V 141
K 3nT  dT 15T3n M= (14
and
2f©
§(°)T +|(f<°) Bz)+I(Bz,f(°))+§2T

i1 OB, = 2 Taf(O) 2m fuS-V

0 BT T T T T e MY
(142

Equations(141) and (142 are similar to the corresponding
equations in Ref.[10] for e=const, whereTd;(®/sT
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=9/2. We substitute Eq(136) into the above equations, As we see from the last equations these coefficients are of

multiply them byV* and integrate ove¥. As a result, we the second order with respect to the small paraméter

arrive at equations for the Coefﬁciem§ and bzy Very Sim”ar .Cpnsiderations may be performed tO derive
the other coefficientd,, k=3, ...,7 andcorrespondingly

the cooling coefficientg,. The computation is straightfor-
ward but rather lengthy and we wish to give here only the
final results, referring for detail to Ref33]:

3¢ T 9O 2 4
-2 4 Z0o@ — 0@
1( B "B gt T3t H@T g

[OT gb;, 4k

B o1 3BnTl 2277 [ 108759\/5 ,
£s=|3125”0° | 5250 000V 70
b 29 2 0WH(ap) + —0@| + {0 b
ol g~ T3 H(a) + 2y B T Bmx%
~ 12500 213’ (150
T§(O)b o a3 3n?T
+ﬁ 1 3BnT[ (aZ) ]1 ( )
228 \f
where we use the notations (5= 15625 3T2 ; (151
1_oda;
H(az)El+a2+2T (144 |38 979549\[ , 253
£6= 22509 *| 5200000V 7 @0 150"
and introduce the coefficient
B
I x 82| —o, (152
Qf )EJ dclf dczf ded(—cyp-e)|cipe[fO(cy) 3n%T
X (C2)Sy(C5)A(Ci+C)). (145 {5152 ,+(771053\F , 1786 )
7= 7| A5 Wo T A~ — Wy S5 W1
The calculation of this coefficierisee the Appendixyields 675 900000 225
B#
1 903 567 ’2 0
@) _ g4 o= - X8| —. (153
476973 4459833 52 146 The second-order coefficietij is not given, since it is of the
44000 35200 00(53‘2 w10 (146 order of £,~0(48"3%). It is interesting to note that while the

_ o . ~ coefficients{y, {>, {4, and{s do not have terms linear in
Equations(143) are similar to the analogous equations in §’, the other coefficientg, do have the linear contribution.

Ref.[10]. _ o We wish also to emphasize that for practical applications the
We seek the solution fds, , b, as expansions in terms of second-order cooling coefficiest?) is unimportant since it
o' depends on the product of two small values, on the dissipa-

tive paramete®’, and on second-order gradients.

Ko
blzm( 5, bl,l+ 5’2b12+ .. ‘),
VII. TWO-DIMENSIONAL GRANULAR GAS

So far we have restricted ourselves to the three-

KO ! ! . . . . .
bzzﬁ@ b1t 820y ot ). (147 dimensional systems although the calculations are identical
for general dimension. Of particular interest is the case
Substituting Eqs(147) into Egs.(143 together with expres- =2. Since molecular dynamics simulations are frequently

sions(100) and (123 for 7 and , Eq.(28) for a, and Egs. performed for the two-dimensional systems, in this section

(139 and (146) for lelz) and equating terms of the same we present the results fo.r the two-dimensional gases of vis-

order in &', we find the coefficient®, ., andb, ;. These coelastic particles. We wish to stress that these systems are,
] 1,1, 172

coefficients are then used to find the cooling coefficights L?efricgfigizLﬁ}’;’;%ﬂ?{ﬂg??&;gﬁg \;Vghsetrlgsuss;rgecﬁg"
and{,, according to Eq(137). The result reads assume that the motion of the spherical particles of the gas is

1747 w2 restricted to a two-dimensional surface.
(1= Vg2 O, (148 The hydrodynamic equations for the two-dimensional
80000 7 © nT gases have the form

_ 19 @5,k on . .
2 10007 0 2 (149 — V- (=0,
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-

ot

at

aT
—+Uu-VT+= (P

Ju . . o A
—+u-Vu+(nm) V.P=0,

|]Vjui+€'a)+§T:0,

with the pressure tensor and the heat flux

Pij=nT5ij - 7](V|UJ+VJU|_

G-

> >

VT—uVn.

5ijﬁ'a).

Correspondingly, the transport coefficients read

n=10(1+ 8 71+ 8 ¥+

where 8’ (t) = 8[ 2T(t)/T]¥*° and

Moo= 20_ V

~ 29 \2m

771—@)

——— y~0.234,
v

~ 111 w2 569 w27

72~ 160000 7 | 14080
Similarly,
Kk=rKo(l+ 8Ky + 8" kot - -
with
2 \/T
"¢ N m’
~ 433 27w
1=~ 3500 7 0.700,
;22%(;-27840905070361)(2)4' 95 619@(01

and

70400

KoT ,~ )2~
p=— (8t 8yt ),

~ _7 wo\/z
20 T

Iu‘l_zo

~ 1 7411
M2=

The zero-order cooling coefficienf(®) reads for a two-

~1.811,

7
— J— 2 —_—
= " 800000 20V27 1

),

~0.308.

)

~11.89

~0.056.

dimensional gas of viscoelastic particles

(154

(155

(156)

(157

(158

(159

(160)
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12T 1 -
g(o): Fna(zwob"—wzﬁ'z—%n- ,

.1 9J_

w2=§w 500, w0~5 246, (161

with the numerical constants; given by Eq.(20). The
corresponding second-order cooling coefficients are

69w520

$151600 7 0 nT (162
21 (i)g /ZKO
(=555 9 pey (163
75759 o2
£s= | 125 4000000
BmKO
~ 16000” 2n2T38’ (1649
2 BmKO
{s= 1250V 7" 2n3T2’ (169
7 33071\F ,, 659 | | B
86~ 50209 ~| 200000V 70" 200°1)? " |5p2r2”
(166)
_[e07 (149061 \F )
£7=~| 50 “0% ~ | 200000V 70
1739 Bno
+mw ) 22T (167

As previously, we do not write the second-order coefficient
{4~0(8").

VIIl. RESULTS AND DISCUSSION

We have derived the hydrodynamics of granular gases of
viscoelastic particles. Collisions of viscoelastic particles are
characterized by an impact velocity dependent coefficient of
restitution. We have used the Chapman-Enskog approach to-
gether with an adiabatic approximation for the velocity dis-
tribution function, which assumes that the shape of the ve-
locity distribution function follows adiabatically the
decaying temperature. We have compared the numerical so-
lutions for temperaturé (t) and for the second Sonine coef-
ficient a,(t) with the corresponding adiabatic approxima-
tions and have found good agreement up to intermediate
dissipation. To derive the hydrodynamic equations and trans-
port coefficients from the Boltzmann equation we used the
standard scheme and account for the additional time depen-
dence of the basic solution. We take into account the time
dependence not only due to the thermal velocity, assfor
=const, but also due to the evolution of the shape of the
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TABLE I. Numerical coefficients for Eq4168—(171). spectively. These time dependencies affect the global behav-
ior of force-free granular gas¢85].
3d 2d 3d 2d Under mild preconditions the presented formalism for the
5, 0.483 0234 5, 0094 0.309 derivation of the hydrodynamic equations and the transport

coefficients may be applied also to gases of particles whose

7~<1 0.393 —0.700 Z<2 4.904 11.893 collision is described by a different impact velocity depen-
w1 1.229 1.811 w, 1415 0.056 dence than given for viscoelastic particles.
7, 1078 1204 7, —1644 —2.093

APPENDIX: DERIVATION OF THE COEFFICIENTS Q,

o . : . : Q,, AND Q{2
distribution function as given for gases of viscoelastic par-

ticles. For the evaluation of the numerical coefficient E§6),
Transport coefficients and the cooling coefficient for di- defined by
lute granular gases of viscoelastic particles read

rm 1SS T, a8 0, [ d& [ o6, [ de8(-cy&)c ey
= ro(1+ 8 %y + 8" Zrpt - ), (169 X p(C2)Dij(C2)A[Djj(C1) + Dy (€)1, (A1)
Kol =~ yo~ we need the factor
p=— (8 mat 8 uat ), (170
Dij(C2)A[Djj(Cy) +Djj(Cy)]
(0)_nT 1% 1 2% S s I N
¢ —%(5 {110+ ), (171 =(C}-Cy)%+(Ch-Cp)%2—(Cy-Cp)?
—(Cy-Cp)2—3C5(ci?+cy’—ci—c)). (A2)

where g and kg are the Enskog values for the viscosity and
the coefficient of thermal conductivity, andl is the time-
dependent dissipative parameter. The numerical coefficientSimilarly, for the coefficient

T, Kip, 12, @ndZy, are given in Table I. We do not give

the corresponding data for the second-order cooling coeffi- R R R oL

cient, since for practical applications it may be neglected. QKEJ dclf dsz ded(—cyp-e)[cyp-effV(cy)
The dependence on temperature and, therefore, on time of

the kinetic coefficients Eq$168—(171) differs significantly X ¢(c2)S 02 A[S(cl)+ s Cz)] (A3)

from the time dependence of the corresponding coefficients
for granular gases of particles which collide with a simplified _.
collisional modele = const. given by Eq.(119, we need

Let us illustrate this with some representative example.
We use characteristic parameters of typical granular system, S(¢c,) - A[S(cy)+S(Cy)]
as considered in Ref[34]: A=2x10"° s, Y/(1—1?)
=8 GPa,R=0.05 m, m=0.130 kg, and take the average
initial velocity vy=10"1 m/s. These parameters yield
=0.15, which allows to neglect tern®( %) and which cor- oo oo
respond to the initial restitution coefficient for the average —(Cy-Cp)Ci—(Cp-Cp)C5). (Ad)
velocity £;,;;=0.79. Using the above theory, we find the val-
ues 7/ 7o=1.079, x/ko=1.187, ul/(xoT/N)=0.232, and  \th (A2) and(A4), we write for the coefficient), ,
{DI(nT/5,)=0.130 at initial temperatur@=T,. For the K
simplified assumption of a constant restitution coefficient
these quantities do not depend on time, but only on the value (0)
of €. As the gas evolves, its temperature decreases and if we 2= fdclf dczf deo(— iz e)|c12 e|f () (c2)
take the temperature after some timeTas10 °T,, we ob-
tain for the above quantitiesy/ 7q=1.024, «/ky=1.032, X
wl(koT/N)=0.065, and®/(nT/7,)=0.050.

As we see from these estimates, the above reduced quan-
tities are not constant as for the casesefconst, but instead — —c5(ci?+ ey’ —ci—cd)|,
change in time. However, while the quantiy n, changes 3
only by about 6% and</xy by only 15%, the other two
variables change by a factor of 3.5 and a factor of 2.6, reand for the coefficienf),,

5\ . . -
=(c§— 5)[(ci.c2><c1)2+(cg-c2><c§>2

2 ZN24 (21 22 2 22 2% 22
(C1-C2)“+(C5-Cx)°—(Cq1-Cp)°—(Cy- Cyp)

(A5)
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0= [ a6, [ dé, [ de0(~¢1r 8161 SO0 a(c)  Iutmnpo= [ doiz[ o€ d60(~Cpr E)lesz 817

X ¢(C15) p(C)CKeiAC-C1)™(C-€)"(C1p-€)P.

5 oL o o
c3- 5)[(ci~cz)(c1)2+(c§~cz)(c§)2

X
(A13)
—(C1-C2)ci—(Cp- Co)C3]. (A6) | . _ o
The solution of this integral, in general, dimensidrreads
The coefficients){") andQ{? have similar structure: [24] for n=0
o= f dé, f dé, f 460~ &1y 6)[G1pe ST Ikt mopa=(—DP[L+(—1)M2 Fmepratiq
. X By o1 (A4
% (C1) h(Cy) (Crpr e)ZSZ(C§)(1—82) (A7) ,Bp+ +1,8m')’k+m')’|+m+p+ +1 ( )
and forn=1
aP)= j dé, j dé, j 460 (— 61y 6)[61p 8[FOcy) Tt mipa=(—DPF UL+ (— 1l mepratig L
X By 1, (AL5
><d)(CZ)SZ(C%)(Cfl-I—Cé4—C11—Cg). (A8) ,3p+ +2:8m+17k+m+17|+m+p+ 410 ( )

The precollision velocities, , ¢, as well as after-collision and forn=2
velocitiescy, ¢, can be expressed in terms of the center of

Y > - - — [+m+p+a+l
mass velocityC=(c;+c,)/2 and the relative velocitg;, Jktmzp.a=(—1)P[1+(-1)TJ27 P

:61_62 before the collision X[(d_1)Qd]7l?’k+m+23’|+m+p+a+1
61:é+%612, X[(dBp+a+3_IBp+a+l)ﬂm+2
R R R +(Bp+a+l_ﬁp+a+3)ﬂm]1 (A16)
c,=C—3Cip,
Loa e I where
c;=C+3Cp—3(1+e)(cye)e,
Zr 2 1z 1 g N\ A 27Td/2
C5=C—3Cpt3(1+e)(Cp€)e. (A9) Q4= g (A17)
The coefficient of restitution is expressed in terms of the F(E)

relative velocityc,, by
is the surface of d-dimensional unit sphere. The coefficients

e=1— Clér(t)|612' é|1/5+ %Ciélz(t)|612 é|2/5+ e read
(A10) Bms Ym
The second Sonine polynomial in the distribution function r m+1
= 2
fO(cy)=(cy)[1+a,S,(cD)], (A11) Bm= w(d*”’zm,
o F(_
reads in terms o€ andci,, 2
ct 1 . . 1 .1
Sy(cd)= 5+ 5(C-C1)?+ 55C1,+ C*(C-Cyp) + - C2ci, m+d
2 2 32 4 >
—~9—m/2
1, .. 5, 5_ .. 5, 15 Ym=2 d (A18)
+chz(C'C12)_§C a_E(C'Clz)_gclz‘Fg- r 3
(A12)

Following this procedure, we obtain the desired coefficients
If we replace all factors in the integrands of E¢85)—(A8)  as given by Eqs(97), (120), (139, and (146).

by the corresponding expressions in term<adnd 512, we The evaluation of the sums which lead to the factrs,
observe thaf),,, Q. andQ*? may be written as a sum of Q,, and Q? is straightforward, however, very lengthy.
integrals of the structure They can be calculated by symbolic algebg&].
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