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Hydrodynamics and transport coefficients for dilute granular gases
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The hydrodynamics of granular gases of viscoelastic particles, whose collision is described by an impact-
velocity dependent coefficient of restitution, which is developed using the Chapman-Enskog approach. We
derive the hydrodynamic equations and the according transport coefficients with the assumption that the shape
of the velocity distribution function follows adiabatically the decaying temperature. We show numerically that
this approximation is justified up to intermediate dissipation. The transport coefficients and the coefficient of
cooling are expressed in terms of the elastic and dissipative parameters of the particle material and by the gas
parameters. The dependence of these coefficients on temperature differs qualitatively from that obtained with
the simplifying assumption of a constant coefficient of restitution which was used in previous studies. The
approach formulated for gases of viscoelastic particles may be applied also for other impact-velocity depen-
dencies of the restitution coefficient.
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I. INTRODUCTION

Granular systems composed of a large number of diss
tively interacting particles behave in many respects as a c
tinuous medium and may be, in principle, described by a
of hydrodynamic equations with appropriate boundary c
ditions. Although this approach is successively used in v
ous fields of engineering and soil mechanics~e.g., Refs.
@1,2#! a first-principles theory for dense granular media
still lacking. Hydrodynamics may be also applied to mu
simpler systems, such as rarefied granular gases. It has
used to describe many different processes, e.g., rapid gr
lar flows, structure formation, etc.~see Ref.@3# for an over-
view!. For these systems, the hydrodynamic equations
not postulated but derived from the Boltzmann equation. T
corresponding transport coefficients are not phenomenol
cal constants, instead they are obtained by regular meth
such as the Grad method@4# or the Chapman-Enskog metho
@5#. In most of the studies, which address the derivation
hydrodynamic equations and kinetic coefficients, it was
sumed that the coefficient of restitution« is a material con-
stant, e.g., Refs.@6–13#.

This assumption simplifies the analysis enormously; ho
ever, it is neither in agreement with experimental obser
tions ~e.g., Refs.@14–16#! nor with basic mechanics of par
ticle collisions@17#. The coefficient of restitution depends o
the impact velocityg and tends to unity for very smallg. As
a consequence, particles behave more and more elastica
the average velocity of the grains decreases. The simp
collision model which accounts for dissipative material d
formation, is the model of viscoelastic particles. It is a
sumed in this model that the elastic stress in the bulk of
particle material depends linearly on the strain, whereas
dissipative stress depends linearly on the strain rate.

Based on the fundamental work by Hertz@18#, the inter-
action force between colliding viscoelastic spheres has b
derived@19#. Using this generalized Hertz law the coefficie
of restitution of viscoelastic particles can be given as a fu
tion of the impact velocity and material parameters@20#:
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«512C1Aa2/5g1/51 3
5 C1

2A2a4/5g2/57•••, ~1!

with

g[ueW•~vW 12vW 2!u5ueW•vW 12u. ~2!

The unit vectoreW5rW12/r 12 specifies the collision geometry
i.e., the relative positionrW125rW12rW2 of the particles at the
collision instant. Their precollision velocities are given byvW 1

andvW 2. The elastic constant

a5S 3

2D 3/2 YAReff

meff~12n2!
~3!

depends on the effective mass and radiusmeff[m1m2 /(m1
1m2), Reff[R1R2 /(R11R2) of the colliding spheres, on
the Young modulusY, and on the Poisson ration of the
particle material. The dissipative coefficientA is a function
of dissipative and elastic constants~see Ref.@19# for details!.
Finally, C1 is a numerical constant@17,20#

C15
Ap

21/552/5

G~3/5!

G~21/10!
'1.153 44. ~4!

Equation~1! describes pure viscoelastic interaction. T
assumption of viscoelastic deformation is justified if the im
pact velocity is not too large to avoid plastic deformation
the particles and not too small to neglect surface effects s
as adhesion, van der Waals forces, etc. We also assume
the rotational degrees of freedom of particles may be
glected and consider a granular gas of identical particle
the absence of external forces. Then the coefficient of re
tution gives the velocities of particles after a collisionvW 18 , vW 28
in terms of their values before the collision:

vW 1/28 5vW 1/27
11«

2
~eW•vW 12!eW . ~5!
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The impact-velocity dependence of the coefficient of r
titution implies serious consequences for the granular ga
namics: For the simplified case«5const, the form of the
velocity distribution functionf (vW ,t) is characterized by a
time-independent scaled functionf̃ (cW ). It depends only on
the scaled velocitycW5vW /vT , wherevT(t)5A2T(t)/m is the
thermal velocity andT(t) is the granular temperature@21–
23#. The distribution function depends on time only via t
time dependence of the granular temperature, its shap
time independent. The small deviations of the velocity d
tribution function from the Maxwell distribution are dete
mined by the time-independent coefficient of restitution. F
granular gases of viscoelastic particles, however, the ef
tive value of « changes with time along with the therm
velocity vT(t), which gives a typical velocity of the par
ticles. Therefore, the shape of the velocity distribution fun
tion evolves in a rather complicated way@24#.

The time dependence of the velocity distribution functi
has to be taken into account when the hydrodynamic eq
tions and the transport coefficients are derived. Since
simple scaling is violated, the standard methods of kine
theory of gases, developed for«5const ~e.g., Refs.
@10,12,25#! must be revised.

As it follows from our analysis, the transport coefficien
for gases of viscoelastic particles depend on temperature
time rather differently as compared with the case«5const.
Correspondingly, the behavior of gases of viscoelastic p
ticles differs qualitatively from that of gases of particles w
the simplified collision model«5const.

We wish to remark that the impact-velocity dependence
« has been already taken into account in Ref.@26# for the
hydrodynamic description of granular shear flow. In th
study, an empirical expression of the coefficient of restitut
was applied and a Maxwellian velocity distribution was a
sumed. Moreover, the authors have used the stan
Chapman-Enskog method without the modifications requ
for gases of dissipatively colliding particles. These modific
tions for the case of«5const. have been extensively elab
rated in Ref.@10#.

The aim of the present study is to develop a continu
description of granular gases of viscoelastic particles.
derive the hydrodynamic equations along with the transp
coefficients and the coefficient of cooling. In the rest of t
paper, in Secs. II–VI, we discuss in detail the most import
case of the three-dimensional gases, while in Sec. VII,
present the results for the two-dimensional systems, wh
are frequently addressed in molecular dynamics studies.

II. VELOCITY DISTRIBUTION AND TEMPERATURE
IN THE HOMOGENEOUS COOLING STATE

A. Evolution equations for temperature and for the second
Sonine coefficient

In this section, we introduce the notations and brie
sketch the necessary results for the homogeneous co
state; more detail may be found in Refs.@24,27#.

The Boltzmann equation for a granular gas of viscoela
particles in the homogeneous cooling state reads@24,27#
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f ~vW 1 ,t !5s2E dvW 2E deWQ~2vW 12•eW !uvW 12•eW u

3@x f ~vW 19 ,t ! f ~vW 29 ,t !2 f ~vW 1 ,t ! f ~vW 2 ,t !#

[I ~ f , f !, ~6!

wheres52R is the particle diameter. The velocitiesvW 19 and

vW 29 denote the precollision velocities of the inverse collisio

which leads to the after-collision velocitiesvW 1 and vW 2. The
factor uvW 12•eW u characterizes the length of the collision cylin
der of cross sections2 and the Heaviside step functionQ
(2vW 12•eW ) assures that only approaching particles collide.
nally, the factorx in the gain term accounts for the Jacobi
of the transformation (vW 19 ,vW 29)→(vW 1 ,vW 2) and for the ratio of

the lengths of the collision cylindersuvW 129 •eW u/uvW 12•eW u for the
direct and the inverse collision. For the case of spheres
liding with a constant coefficient of restitutionx51/«2,
while for viscoelastic spheres, with«5«(g) given by Eq.
~1!, it reads@24,27#

x511 11
5 C1Aa2/5uvW 12•eW u1/51 66

25 C1
2A2a4/5uvW 12•eW u2/51•••.

~7!

The dependence ofx on the impact velocity does no
allow to derive from the Boltzmann equation a tim
independent equation for the scaled distribution functionf̃ .
Contrary to the case of«5const@21–23#, the scaled distri-
bution function depends explicitly on time. Therefore, w
write for a gas of viscoelastic particles

f ~vW ,t !5
n

vT
3~ t !

f̃ ~cW ,t !, cW5
vW

vT~ t !
, ~8!

with the number density of the granular gasn and the ther-
mal velocityvT(t) defined by the granular temperature:

3

2
nT~ t !5E dvW

mv2

2
f ~vW ,t !5

3

2
n

mvT
2~ t !

2
. ~9!

Hence, the shape of the velocity distribution functio
characterized by the rescaled functionf̃ (cW ,t), does not per-
sist but evolves along with temperature@24,27#. We wish to
stress that the time dependence off̃ (cW ,t) is caused by the
dependence of the factorx on the impact velocity. Contrary
for a gas of simplified particles («5const), we obtainx
51/«25const and, therefore, the rescaled distribution fu
tion is time independent,f̃ (cW ,t)5 f̃ (cW ).

For slightly dissipative particles, the velocity distributio
function is close to the Maxwell distribution. It may be d
scribed by a Sonine polynomial expansion@8,22,23,28#:

f̃ ~cW ,t !5f~c!S 11 (
p51

`

ap~ t !Sp~c2!D , ~10!

wheref(c)[p23/2exp(2c2) is the scaled Maxwell distribu-
tion, Sp(x) are the Sonine polynomials
4-2
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S0~x!51,

S1~x!52x21 3
2 ,

S2~x!5
x2

2
2

5x

2
1

15

8
, etc., ~11!

andak(t) are thetime-dependentSonine coefficients, which
characterize the form of the velocity distribution@23,24#. The
first Sonine coefficient is trivial,a150, due to the definition
of temperature@22,23#, while the other coefficients quantif
deviations of the momentŝck& of the velocity distribution
from the moments of the Maxwell distribution̂ck&0, e.g.,

a25
^c4&2^c4&0

^c4&0

. ~12!

Thus, the first nontrivial Sonine coefficienta2 characterizes
the fourth moment of the distribution function.

For small enough inelasticity («*0.6), the distribution
function is well approximated by the second Sonine coe
cient a2 @22,23,28#, i.e., higher coefficientsak50 for k>3
may be neglected. With this approximation the evolution
granular gas of viscoelastic particles in the homogene
cooling state is described by a set of coupled equations
the granular temperature and for the second Sonine co
cient @24,27#:

dT

dt
52

2

3
BTm2[2zT, ~13!

da2

dt
5

4

3
Bm2~11a2!2

4

15
Bm4 . ~14!

The coefficient B[B(t)5vT(t)s2g2(s)n is proportional
to the mean collision frequency. The moments of the
lision integral, m2 and m4 read with the approximationf̃
5f(c)@11a2(t)S2(c2)#:

mp52
1

2E dcW1E dcW2E deWQ~2cW12•eW !ucW12•eW uf~c1!f~c2!

3$11a2@S2~c1
2!1S2~c2

2!#1a2
2S2~c1

2!S2~c2
2!%

3D~c1
p1c2

p!, ~15!

where

Dc~cW i ![c~cW i8!2c~cW i ! ~16!

denotes the change of some functionc(cW i) according to a
collision. The coefficientsmp depend on time via the time
dependence ofa2. For small enough dissipation, the m
mentsm2 andm4 may be obtained as expansions in the tim
dependent dissipative parameterd8,

d8~ t ![Aa2/5@2T~ t !#1/10[dF2T~ t !

T0
G1/10

, ~17!
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with d[Aa2/5T0
1/10 and with the initial temperatureT0.

These expansions read@24,27#

m25 (
k50

2

(
n50

2

Aknd8ka2
n ,

m45 (
k50

2

(
n50

2

Bknd8ka2
n , ~18!

whereAkn andBkn are numerical coefficients. They may b
written in the compact matrix notation~rows refer to the first
index!

Â5S 0 0 0

v0
6

25
v0

21

2500
v0

2v1 2
119

400
v1 2

4641

640 000
v1

D ,

B̂5S 0 4A2p
1

8
A2p

28

5
v0

903

125
v0 2

567

12500
v0

2
77

10
v1 2

476 973

44 000
v1

4 459 833

7 040 0000
v1

D
~19!

with

v0[2A2p21/10GS 21

10D'6.485,

v1[A2p21/5GS 16

5 DC1
2'9.285. ~20!

The coupled equations~13! and ~14! together with Eqs.
~17!–~19! determine the evolution of a granular gas of v
coelastic particles in the homogeneous cooling state. In
ticular, they define the velocity distribution function which
the starting point for the investigation of inhomogeneo
gases.

In the limit of small dissipation,d!1, the coupled equa
tions ~13! and ~14! may be solved analytically. In linear ap
proximation with respect tod the solution reads@24,27#

T~ t !

T0
5S 11

t

t0
D 25/3

, ~21!

where we introduce the characteristic time

t0
215

16

5
q0dtc~0!215

48

5
q0d4s2nApT0

m
, ~22!

with the initial mean collision timetc(0) and the constant
4-3
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N. BRILLIANTOV AND T. PÖSCHEL PHYSICAL REVIEW E67, 061304 ~2003!
q0521/5GS 21

10DC1

8
'0.173. ~23!

Correspondingly in linear approximation, the second Son
coefficient depends on time as@24#

a2~ t !52 12
5 w~ t !21$Li „w~ t !…2Li „w~0!…%, ~24!

with

w~ t ![expF ~q0d!21S 11
t

t0
D 1/6G , ~25!

and with the logarithmic integral

Li ~x![E
0

x 1

ln~ t !
dt. ~26!

For small dissipationd, the time dependence ofa2 reveals
two different regimes:~i! fast initial relaxation on the mea
collision-time scale;tc(0) and~ii ! subsequent slow evolu
tion on the time scale;t0@tc(0), i.e., on the time scale o
the temperature evolution. Therefore, the coefficienta2 ~and
hence the form of the velocity distribution function! evolves
in accordance with temperature. As we show below, the
ear theory being rather accurate for small dissipation loo
its accuracy with increasingd ~see Figs. 1 and 2!. It may be,
however, successively substituted by the adiabatic theory
dressed in the following subsection.

B. Adiabatic approximation for the second Sonine coefficient

For the hydrodynamic description of granular gases,
assume that there exist well separated time and length sc
The short time and length scales are given by the mean
lision time and the mean free path, and the long time a
length scales are characterized by the evolution of the hy
dynamic fields~to be defined in the following section! and
their spatial inhomogeneities. The hydrodynamic appro
corresponds to the coarse-grained description of the sys
where all processes which take place on the short time
length scales are neglected. Therefore, the first stage o
relaxation of the velocity distribution function does not affe
the hydrodynamic description and only the second stag
its evolution on the time scalet0@tc(0) is to be taken into
account. To this end, we apply an adiabatic approximat
We omit the termda2 /dt in the left-hand side of Eq.~14!
which describes the fast relaxation and assume thata2 is
determined by the current values ofm2 and m4 due to the
present temperature. Hence, in the adiabatic approxima
a2 is determined by

5m2~11a2!2m450. ~27!

Using Eq.~18! for m2 , m4, we finda2 as an expansion in th
small parameterd8:

a25a21d81a22d821•••,
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n,

a2152
3v0

20A2p
'20.388,

a225
12 063

640 000

v0
2

p
1

27

40

v1

A2p
'2.752. ~28!

Figures 1 and 2 showa2 in adiabatic approximation due t
Eq. ~28! together with the numerical solution of Eqs.~13!
and ~14! and the results of the linear theory, Eqs.~24! and
~25!. The adiabatic approximation is rather accurate for sm
dissipation,d,0.05, after the initial relaxation~5–10 colli-

FIG. 1. Evolution of the second Sonine coefficienta2 in the
homogeneous cooling state on the short time scale. Solid line,
merical solution of Eqs.~13! and ~14!; dashed line, adiabatic ap
proximation Eq. ~28!; dot-dashed line, the result of the linea
theory, Eqs.~24! and ~25!. The time is given in collision units
tc(0).
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sions per particle! has passed. Even for the larger dissipat
(d50.2), it is in agreement with the numerical result. Th
value of the dissipative parameter corresponds to the in
coefficient of restitution«'0.75 for the thermal velocity
The adiabatic approximation becomes more and more a
rate as the system evolves. Contrary, the linear theory
with increasingd and becomes qualitatively incorrect fo
larger d. In Figs. 1 and 2, the evolution of the system h
started from a Maxwell distribution, i.e.,a2(0)50. Figure 3
shows the relaxation ofa2 from certain initial conditions
a2(0)Þ0 which correspond to non-Maxwellian distributio
functions. The relaxation occurs during the first 5–10 co
sions per particle for all considered values ofd. Then the
adiabatic approximation becomes valid even for intermed
values of the dissipative parameterd. The adiabatic approxi-

FIG. 2. Same as in Fig. 1, but for longer time. The adiaba
approximation improves as the system evolves.
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mation yields very accurate results for the evolution of te
perature. It coincides almost perfectly with the numeric
solution for the short and for the long time scales and for
values of the dissipative parameter 0,d<0.2 ~see Fig. 4!.
Thus, we conclude that the adiabatic approximation may
applied for the hydrodynamic description of granular gas
By means of Eq.~28! for the second Sonine coefficient, w
can determine the momentsm2 , m4, and the cooling coeffi-
cient z,

z5
2

3
m2B5

2

3
A2T

m
ns2~v0d82v2d821••• !, ~29!

where

v2[v11
9

500
v0

2A2

p
. ~30!

Below we will need the derivatives ofa2 andz with re-
spect to temperature and density. Using

T
]d8

]T
5

d8

10
, ~31!

according to the definition ofd8, Eq. ~17!, we obtain

T
]a2

]T
5

1

10
a21d81

1

5
a22d82, ~32!

c

FIG. 3. Same as in Fig. 1, but for different initial values ofa2.
The fast relaxation takes place during the first 5–10 collisions,
dependently ona2(0).
4-5
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T
]z

]T
5

2

3
BS 3

5
v0d82

7

10
v2d821••• D , ~33!

]z

]n
5

1

n
z (0). ~34!

III. HYDRODYNAMIC EQUATIONS AND TRANSPORT
COEFFICIENTS

A. Hydrodynamic fields and hydrodynamic equations

For the derivation of hydrodynamic equations, from t
Boltzmann equation it is assumed that there exist well se
rated time and length scales. As already briefly discusse
the preceding section, in granular gases there are~at least!
two sets of scales. The microscopic scales are characte
by the mean collision time and the mean free path. The m
roscopic scales are given by the characteristic time of
evolution of the hydrodynamic fields and the size of th
spatial inhomogeneities. Hence, scale separation means
the macroscopic fields vary very slowly in space and time
measured in the microscopic units. This assumption allo
for a gradient expansion in space and time, i.e., the app
tion of the Chapman-Enskog method@5#.

The application of the Chapman-Enskog approach
granular gases is more sophisticated than its applicatio
molecular gases: For molecular gases the unperturbed
tion ~the basic solution! for the velocity distribution function

FIG. 4. Evolution of temperature in the homogeneous cool
state on the short time scale~top! and for longer time~bottom!. The
notations are the same as in Fig. 1. The dotted line shows
asymptotic power law att→`.
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is the Maxwell distribution, while for granular gases the b
sic solution is the time-dependent velocity distribution of t
homogeneous cooling state.

For gases of particles in the homogeneous cooling st
which collide with«5const, the velocity distribution func
tion depends on time only through the time-dependent ch
acteristic velocity. The shape of the velocity distributio
function, given byf̃ , is fixed by« and does not depend o
time. Hence, the evolution of temperature describes the e
lution of the velocity distribution function exhaustively. Fo
granular gases of viscoelastic particles the shape of the
locity distribution function, characterized by the Sonine c
efficientsak , is time dependent due to the time dependen
of these coefficients. In the preceding section, we exem
fied this property for the first nontrivial coefficienta2(t),
assuming that for small dissipation higher coefficients m
be disregarded. Therefore, the evolution of granular gase
viscoelastic particles is described by the time dependenc
temperature, i.e., by the second moment of the velocity
tribution function and by the time dependence of its high
order even moments which are characterized by the So
coefficientsa2 , a3, etc. @see Eq.~12!#. Hence, the hydrody-
namic description of granular gases whose particles col
with «5«(g) requires an extended set of hydrodynam
fields which includes the higher-order moments. A regu
approach to derive hydrodynamic equations for this exten
set of fields is the Grad method@4#. Alternatively, for small
dissipation an adiabatic approximation can be applied: I
assumed that the shape of the velocity distribution functi
albeit varying in time, follows adiabatically the current tem
perature. Correspondingly, the higher-order moments are
termined by the temperature too. With this approximation
closed set of hydrodynamic equations for densityn(rW,t), ve-
locity uW (rW,t), and temperatureT(rW,t) may be derived. These
fields are defined, respectively, by the zeroth, first, and s
ond moments of the velocity distribution function:

n~rW,t !5E dvW f ~rW,vW ,t !,

n~rW,t !uW ~rW,t !5E dvW vW f ~rW,vW ,t !,

3

2
n~rW,t !T~rW,t !5E dvW

1

2
mV2f ~rW,vW ,t !, ~35!

whereVW [vW 2uW (rW,t). For small dissipation, the velocity dis
tribution is well approximated by the second Sonine coe
cientsa2(t), i.e., higher-order coefficients are neglected.
adiabatic approximation,a2 is determined by temperatur
according to Eq.~28!.

Multiplying the Boltzmann equation for an inhomoge
neous gas

S ]

]t
1vW 1•¹W D f ~rW,vW 1 ,t !5I ~ f , f !, ~36!

g

he
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correspondingly byv1
0, vW 1 , mv1

2/2, and integrating over

dvW 1, we obtain the hydrodynamic equations~see, e.g., Ref.
@5#!

]n

]t
1¹W •~nuW !50, ~37!

]uW

]t
1uW •¹W uW 1~nm!21¹W • P̂50, ~38!

]T

]t
1uW •¹W T1

2

3n
~ P̂:¹W uW 1¹W •qW !1zT50. ~39!

The cooling coefficientz in the sink termzT may be written
as

z~rW,t !5
s2m

12nTE dvW 1E dvW 2E deWQ

3~2vW 12•eW !uvW 12•eW u f ~rW,vW 1 ,t !

3 f ~rW,vW 2 ,t !~vW 12•eW !2~12«2!. ~40!

The pressure tensorP̂ and the heat fluxqW are defined by

Pi j ~rW,t !5E Di j ~VW ! f ~rW,vW ,t !dvW 1pd i j ,

qW ~rW,t !5E SW ~VW ! f ~rW,vW ,t !dvW , ~41!

wherep5nT is the hydrostatic pressure. The velocity tens
Di j and the vectorSW read

Di j ~VW ![mS ViVj2
1

3
d i j V

2D , ~42!

SW ~VW ![S mV2

2
2

5

2
TDVW . ~43!

The structure of the hydrodynamic equations, except for
cooling termzT, coincides with those for molecular gases

B. Chapman-Enskog approach

The system Eqs.~37!–~39! is closed by expressing th
pressure tensorPi j and the heat fluxqW in terms of the hydro-
dynamic fields and the fields gradients. To this end, we ap
the Chapman-Enskog approach@5#. Application of this
method to dilute granular gases with a constant« has been
elaborated in detail in Ref.@10#. Following the same lines a
in Ref. @10# one can obtain relations forPi j andqW , Eqs.~46!,
with the transport coefficientsh, k, m, given by Eqs.~75!–
~77! which are expressed in terms of functionsaW , bW , g i j ;
these functions are, in turn, the solutions of Eqs.~68!–~70!.
Since our notations differ from that of Ref.@10# and the
corresponding equations for the functionsaW , bW , g i j are
06130
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slightly different, we wish to sketch in the rest of this secti
the derivation of the above relations.

The Chapman-Enskog method is based on two impor
assumptions: The evolution of the distribution function
completely determined by the evolution of its first few m
ments, i.e., it depends on space and time only through
hydrodynamic fields:

f ~rW,vW ,t !5 f @vW ,n~rW,t !,uW ~rW,t !,T~rW,t !#. ~44!

As the second precondition, it is assumed that the gas is
slightly inhomogeneous on the microscopic length sc
which allows for a gradient expansion of the velocity dist
bution function

f 5 f (0)1l f (1)1l2f (2)1•••, ~45!

where each powerk of the formal parameterl corresponds
to the orderk in the spatial gradient. Thus,f (0) refers to the
homogeneous cooling state,f (1) corresponds to the linea
approximation with respect to the fields gradients,f (2) is the
solution with respect to quadratic terms in the field gradien
etc. With these assumptions the Boltzmann equation ma
solved iteratively for each order inl, together with the hy-
drodynamic equations for the moments of the velocity dis
bution function. The solution in zeroth order inl yields the
velocity distribution function for the homogeneous coolin
state f (0) and the corresponding evolution of temperatu
The functionf (0) is then used to computeP̂ andqW , yielding
P̂(0)5d i j p, qW (0)50, and the hydrodynamic equations for th
ideal fluid. These first-order equations contain only line
gradient terms. Thenf (1) may be found employing the first
order hydrodynamic equations and the distribution funct
f (0). The obtainedf (1) as well as the corresponding expre
sions forP̂(1) andqW (1) are linear in the field gradients:

Pi j 5pd i j 2hS ¹iuj1¹jui2
2

3
d i j ¹W •uW D ,

qW 52k¹W T2m¹W n. ~46!

The transport coefficientsh, k, andm in these equations ar
expressed in terms off (1). Hence, within the Chapman
Enskog approach for each order in the gradient expansio
closed set of equations may be derived. Keeping only
first-order field gradients for the distribution function an
respectively, for the pressure tensor and for the heat flux a
Eq. ~46!, the Navier-Stokes hydrodynamics is obtaine
Keeping next-order gradient terms corresponds to the B
nett or super-Burnett description. We will restrict ourselv
to the Navier-Stokes level@30# and skip for simplicity of the
notation the superscript ‘‘~1!’’ for P̂ andqW in the above equa-
tions.

The Chapman-Enskog scheme also assumes a hiera
of time scales and, respectively, a hierarchy of time deri
tives

]

]t
5

] (0)

]t
1l

] (1)

]t
1l2

] (2)

]t
1•••, ~47!
4-7
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where each orderk in the time derivative,] (k)/]t[] t
(k) , cor-

responds to the related order in the space gradient. Co
quently, the higher the order in the space gradient, the slo
is the according time variation. Using the formal expans
parameterl, we can write the Boltzmann equation

S ] (0)

]t
1l

] (1)

]t
1•••lvW 1•¹W D ~ f (0)1l f (1)1••• !

5I @~ f (0)1l f (1)1••• !,~ f (0)1l f (1)1••• !#,

~48!

and collect terms of the same order inl. The equation in
zeroth order,

] (0)

]t
f (0)5I ~ f (0), f (0)!, ~49!

coincides with Eq.~6! for the homogeneous cooling stat
According to the Chapman-Enskog scheme, we obtain
velocity distribution function in zeroth order

f (0)~vW ,rW,t !5
n~rW,t !

vT
3~rW,t !

@11a2S2~c2!#f~c!, ~50!

where cW5(vW 2uW )/vT5VW /vT . The corresponding hydrody
namic equations in this order read

] (0)

]t
n50,

] (0)

]t
uW 50,

] (0)

]t
T52z (0)T, ~51!

wherez (0) is to be calculated using Eq.~40! with f 5 f (0). In
this way, we reproduce the previous result~29!.

Collecting termsO(l), we obtain

] (0)f (1)

]t
1S ] (1)

]t
1vW 1•¹W D f (0)1J(1)~ f (0), f (1)!50, ~52!

where we introduce

2J(k)~ f (0), f (k)![I ~ f (0), f (k)!1I ~ f (k), f (0)!. ~53!

The corresponding first-order hydrodynamic equations re

] (1)n

]t
52¹W ~nuW !,

] (1)uW

]t
52uW •¹W uW 2

1

nm
¹W p,

] (1)T

]t
52uW •¹W T2

2

3
T¹W •uW 2z (1)T. ~54!

The termz (1) is found by substitutingf 5 f (0)1l f (1) into Eq.
~40! and collecting terms of the orderO(l). These terms
contain the factorf (0)(vW ,rW,t) f (1)(vW ,rW,t) in the integrand.
They vanish upon integration according to the different sy
metry of the functionsf (0) and f (1), thus,z (1)50 @31#.
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Since the distribution functionf (0) is known, we can
evaluate those terms in Eq.~52! which depend only onf (0):

S ] (1)

]t
1vW 1•¹W D f (0)5

] f (0)

]n S ] (1)n

]t
1vW 1•¹W nD

1
] f (0)

]uW
•S ] (1)uW

]t
1vW 1•¹W uW D

1
] f (0)

]T S ] (1)

]t
T1vW 1•¹W TD . ~55!

With vW 15VW 1uW , the time derivatives ofn, uW , andT given in
Eq. ~54!, and the relations

] f (0)

]n
5

1

n
f (0),

] f (0)

]uW
52

] f (0)

]VW
, ~56!

which follow from Eq.~50!, we recast Eq.~52! for f (1) into
the form

] (0)f (1)

]t
1J(1)~ f (0), f (1)!5 f (0)~¹W •uW 2VW •¹W ln n!,

1
] f (0)

]T S 2

3
T¹W •uW 2VW •¹W TD

1
] f (0)

]Vi
S ~VW •¹W !ui2

1

nm
¹i pD ,

~57!

where we take into accountz (1)50.
The right-hand side is known since it contains onlyf (0). It

is convenient, however, to rewrite it in a form which show
explicitly the dependences on the fields gradients. Empl
ing

1

nm
¹i p5

T

m
¹i ln T1

T

m
¹i ln n, ~58!

the right-hand side of Eq.~57! yields

] (0)f (1)

]t
1J(1)~ f (0), f (1)!5AW •¹W ln T1BW •¹W ln n1Ci j ¹jui ,

~59!

with

AW ~VW !52VW T
] f (0)

]T
2

T

m

] f (0)

]VW
, ~60!

BW ~VW !52VW f (0)2
T

m

]

]VW
f (0), ~61!

Ci j ~VW !5
]

]Vi
~Vj f

(0)!1
2T

3
d i j

] f (0)

]T
. ~62!
4-8
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We will calculate these terms below. From the form of t
right-hand side of Eq.~59!, we expect the form of its solution

f (1)5aW •¹W ln T1bW •¹W ln n1g i j ¹jui , ~63!

which is the most general form of a scalar function, whi
depends linearly on the vectorial gradients¹W T, ¹W n, and on
the tensorial gradients¹jui . The coefficientsaW , bW , andg i j

are functions ofVW and of the hydrodynamic fieldsn, uW ,
andT.

We derive now equations for the coefficientsaW , bW , and
g i j by substitutingf (1) as given by Eq.~63! into the first-
order equation~59! and equating the coefficients of the co
responding gradients. To this end, we need] t

(0)f (1) and,

therefore, the time derivatives of the coefficientsaW , bW , and
g i j ,

] (0)aW

]t
5

]aW

]T

] (0)T

]t
1

]aW

]n

] (0)n

]t
1

]aW

]ui

] (0)ui

]t
52z (0)T

]aW

]T
,

~64!

where we use Eqs.~51! in zeroth order. Similarly, we obtain

] (0)bW

]t
52z (0)T

]bW

]T
,

] (0)g i j

]t
52z (0)T

]g i j

]T
, ~65!

and, respectively, the time derivatives of the gradients

] (0)

]t
¹W ln n50,

] (0)

]t
¹jui50,

] (0)

]t
¹W ln T52¹W z (0)52S ]z (0)

]n D¹W n2S ]z (0)

]T D¹W T. ~66!

The derivatives ofz (0) are given by Eqs.~33! and~34!. From
Eqs.~64!–~66!, we obtain

] (0)f (1)

]t
52S T

]z (0)

]T
aW D •¹W ln T

2S z (0)T
]bW

]T
1z (0)aW D •¹W ln n2z (0)T

]g i j

]T
¹jui ,

~67!

where we use Eq.~34!. If we insert] t
(0)f (1) into Eq.~59! and

equate the coefficients of the gradients, we arrive at a se
equations for the coefficientsaW , bW , andg i j ,

2T
]z (0)

]T
aW 1J(1)~ f (0),aW !5AW , ~68!

2z (0)T
]bW

]T
2z (0)aW 1J(1)~ f (0),bW !5BW , ~69!
06130
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2z (0)T
]g i j

]T
1J(1)~ f (0),g i j !5Ci j , ~70!

whereJ(1) is defined by Eq.~53!.

C. Kinetic coefficients in terms of the velocity distribution
function

From the definition of the pressure tensor Eq.~41! and its
expression in terms of the field gradients, Eq.~46!, follows:

E Di j ~ f (0)1aW •¹W ln T1bW •¹W ln n1gkl¹luk!dVW

52hS ¹iuj1¹jui2
2

3
d i j ¹W •uW D , ~71!

where the tensorDi j (VW ) has been defined above. The int
grals

E Di j f
(0)dVW 5E Di j aW dVW 5E Di j bW dVW 50. ~72!

vanish sinceDi j is a traceless tensor andf (0) depends isotro-
pically onVW . Moreover, as will be shown below, the vecto
aW and bW are directed alongVW , hence, the respective inte
grands are odd functions ofVW . Therefore, only the term with
the factorgkl¹luk on the left-hand side of Eq.~71! is non-
trivial. Equating the coefficients of the gradient factor¹luk ,
we obtain

E Di j gkldVW 52hS d l i dk j1d l j dki2
2

3
d i j dklD . ~73!

For k5 j , l 5 i , the last equation turns into

E Di j g j i dVW 52hS d i i d j j 1d i j d i j 2
2

3
d i j d i j D5210h

~74!

(d i i d j j 59 and d i j d i j 53 according to the summation con
vention! and yields the coefficients of viscosity

h52
1

10E Di j ~VW !g j i ~VW !dVW . ~75!

Using Eq.~41! for the heat flux and its corresponding expre
sion in terms of the field gradients, Eq.~46!, we can perform
a completely analogous calculation and arrive at the kin
coefficientsk andm,

k52
1

3TE dVW SW ~VW !•aW ~VW !, ~76!

m52
1

3nE dVW SW ~VW !•bW ~VW !, ~77!
4-9
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with SW defined by Eq.~43!. The coefficient of thermal con
ductivity k has the standard interpretation, while the oth
coefficientm does not have an analog for molecular gase

IV. COEFFICIENT OF VISCOSITY

The viscosity coefficient is related to the coefficientg i j
@see Eq.~75!# which, in turn, is the solution of Eq. 70 with
the coefficientCi j on the right-hand side. Let us first find a
explicit expression forCi j .

According to Eq.~50!, the velocity distribution function
depends on temperature through the thermal velocityvT and
additionally through the second Sonine coefficienta2.
Hence, the temperature derivative off (0) reads

] f (0)

]T
5

1

2T

]

]VW
•VW f (0)1 f M~V!S2~c2!

]a2

]T
, ~78!

with f M(V) being the Maxwell distribution

f M5
n

vT
3

f~c! with f~c!5
1

p3/2
exp~2c2!. ~79!

Using the relation

] f (0)

]Vi
5

Vi

V

] f (0)

]V
, ~80!

and Eq.~78!, the coefficientCi j reads

Ci j ~VW !

5S ViVj2
1

3
d i j V

2D 1

V

] f (0)

]V
1

2

3
d i j S2~c2! f M~V!T

]a2

]T
.

~81!

With

1

V

] f (0)

]V
52

m

T
@11a2S2~c2!# f M1

m

T S c22
5

2Da2f M ,

~82!

we obtain

Ci j 52
1

T
Di j F11a2S S2~c2!1

5

2
2c2D G f M~V!

1
2

3
d i j S2~c2! f M~V!T

]a2

]T
, ~83!

whereDi j (VW ) has been defined in Eq.~42!.
The expression forCi j determines the right-hand side o

Eq. ~70! for g i j and hence, it suggests the form forg i j . For
small dissipation~whena2 is small! and for small fields gra-
dients, we keep only the leading terms with respect to th
variables. Therefore, we seek forg i j in the form

g i j ~VW !5
g0

T
Di j ~VW ! f M~V!, ~84!
06130
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whereg0 is a velocity-independent coefficient, i.e., we n
glect the dependence ofg i j on a2 @32#. The viscosity coeffi-
cient Eq.~75! reads then

h52
g0

10

1

TE dVW Di j Di j f M52g0nT, ~85!

where we take into account that

Di j D ji 5
2
3 m2V4 ~86!

according the definition ofDi j , Eq. ~42!, with the summa-
tion convention. Moreover, we have used the fourth mom
of the Maxwell distribution. From Eq.~85! it follows:

g052
h

nT
. ~87!

Multiplying Eq. ~70! by Di j (VW 1), integrating overVW 1 and
using Eq.~75! yields

210z (0)T
]h

]T
52E dVW 1Di j ~VW 1!Ci j ~VW 1!

1E dVW 1Di j ~VW 1!J(1)~ f (0),g i j !. ~88!

To evaluate the first term on the right-hand side, we use
~62! for Ci j , the relation

]

]Vi
Di j 5

]

]Vi
mS ViVj2

1

3
d i j V

2D5mVj S 11
1

3
d i j D ,

~89!

the definition of temperature, Eq.~35!, and notice that
Di j d i j 50 sinceDi j is a traceless tensor@see Eq.~42!#. Inte-
gration by parts then yields

E dVW 1Di j Ci j 5E dVW 1Di j

]

]V1i
V1 j f

(0)

1
2T

3 E dVW 1Di j d i j

] f (0)

]T

5E dVW 1f (0)mV1 jV1 j S 11
1

3
d i j D

5
10

3 E dVW 1f (0)mV1
2510nT. ~90!

For the second term on the right-hand side of Eq.~88!, we
use the definition ofJ(1), Eq. ~53!, and obtain

E dVW 1Di j J
(1)~ f (0),g i j !

52E dVW 1Di j I ~ f (0),g i j !2E dVW 1Di j I ~g i j , f (0)!.

~91!

We apply the property of the collision integral@5#
4-10
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E dVW 1Di j I ~ f (0),g i j !5E dVW 1Di j I ~g i j , f (0)!

5
s2

2 E dVW 1E dVW 2f (0)~VW 1!g i j ~VW 2!

3E deWQ~2VW 12•eW !uVW 12•eW uD

3@Di j ~VW 1!1Di j ~VW 2!#, ~92!

where Dc(vW i)[c(vW i8)2c(vW i) denotes as previously th

change of some quantityc(vW i) due to a collision. Equation
~91! turns then into

E dVW 1Di j J
(1)~ f (0),g i j !

52s2E dVW 1E dVW 2f (0)~VW 1!g i j ~VW 2!

3E deWQ~2VW 12•eW !uVW 12•eW uD@Di j ~VW 1!1Di j ~VW 2!#.

~93!

We write the factors in the last integral using the dimensi
less velocitiesVW 1/25vTcW1/2:

Di j ~VW !5mvT
2Di j ~cW !5mvT

2S cicj2
1

3
d i j c

2D ,

g i j ~VW !5
g0

T S n

vT
3D mvT

2Di j ~cW !f~c!, ~94!

and recast Eq.~93! into the form

E dVW 1Di j ~VW 1!J(1)~ f (0),g i j !54hvTns2Vh , ~95!

where we substituteg052h/nT and whereVh is a numeri-
cal coefficient defined by

Vh[E dcW1E dcW2E deWQ~2cW12•eW !ucW12•eW u f̃ (0)~c1!

3f~c2!Di j ~cW2!D@Di j ~cW1!1Di j ~cW2!#. ~96!

The coefficientVh may be expressed in terms of the dis
pation parameterd8 and the second Sonine coefficienta2
~see the Appendix!:

Vh52~w01d8w12d82w2!, ~97!

with

w054A2pS 12
1

32
a2D ,

w15v0S 1

15
2

1

500
a2D ,
06130
-

w25v1S 97

165
2

679

44 000
a2D . ~98!

Substituting Eqs.~90!, ~95!, and~97! into Eq.~88! and using
Eq. ~29! for z (0), we obtain an equation for the coefficient o
viscosityh:

~v0d82v2d82!T
]h

]T

5
3

5
~w01w1d82w2d82!h2

3

2

1

s2
AmT

2
.

~99!

We seek the solution as an expansion in terms ofd8:

h5h0~11d8h̃11d82h̃21••• !. ~100!

The solution in zeroth order

h05
5

16s2
AmT

p
~101!

is the viscosity coefficient for a gas of elastic particles~En-
skog viscosity!, while the coefficientsh̃1 andh̃2 account for
the dissipative properties of viscoelastic particles. With E
~31!, the temperature derivative of the viscosity coefficie
reads

T
]h

]T
5h0S 1

2
1

3

5
d8h̃11

7

10
d82h̃21••• D . ~102!

We substitute Eqs.~100! and~102! into Eq. ~99!, expressa2
in terms ofd8 according to Eq.~28! and collect terms of the
same order ind8. This yields the equations forh̃1 , h̃2, etc.,
whose solutions read

h̃15
359

3840

A2p

p
v0'0.483,

h̃25
41 881

23 04 000

v0
2

p
2

567

28 160

v1A2p

p
'0.094, ~103!

with v0/1 given by Eq.~20!.
Thus, we arrive at the final expression for the viscos

coefficient for a granular gas of viscoelastic particles,

h5
5

16s2
AmT

p
~110.483d810.094d821••• !.

~104!

In contrast to granular gases of simplified particles«
5const), whereh}AT, for a gas of viscoelastic particle
there is an additional temperature dependence due to
time-dependent coefficientd8.
4-11
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V. COEFFICIENT OF THERMAL CONDUCTIVITY
AND THE COEFFICIENT µ

To find coefficientsk andm, we need the coefficientsaW

and bW which are the solutions of Eqs.~68! and ~69!. The
functions AW and BW on the right-hand sides may be foun
from Eqs.~60! and ~61!:

AW 52
1

T
SW ~VW !@11a2$S2~c2!112c2%# f M

2VW S2~c2!Fa21

10
d81

a22

5
d82G f M , ~105!

BW 5
a2

T
SW ~VW ! f M . ~106!

Keeping only leading terms with respect to the gradients
a2, we chooseaW in the form

aW 52
a1

T
SW ~VW ! f M~V!, ~107!

with a1 being the velocity independent coefficient. This a
satz foraW yields the coefficient of thermal conductivity

k52
1

3TE dVW SW ~VW !•aW ~VW !

5
a1

3T2E dVW S mV2

2
2

5

2
TD 2

V2f M5
5

2

nT

m
a1 , ~108!

which implies

a15
2m

5nT
k. ~109!

Multiplying Eq. ~68! for aW by SW (VW 1)/T, integrating overVW 1
and using Eq.~76! for k, we obtain

3
]

]T
z (0)kT5

1

TE dVW 1SW •AW 2
1

TE dVW 1SW •J(1)~ f (0),aW !.

~110!

To evaluate the first term on the right-hand side, we use
~43! for SW (VW ) and Eq.~105! for AW (VW ):

2
1

TE dVW SW ~VW !•AW ~VW !

5vT
2E dVW S c22

5

2D 2

c2@11a2$S2~c2!112c2%# f M

1vT
2E dVW S c22

5

2D c2Fa21

10
d81

a22

5
d82GS2~c2! f M .

~111!

With the Maxwell distribution equation~79!, the first term in
Eq. ~111! reads
06130
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4pnvT
2H E

0

`

c4f~c!S c22
5

2D 2

dc1a2E
0

`

c4f~c!

3S c22
5

2D 2Fc4

2
2

7c2

2
1

23

8 GdcJ
5

15

4
nvT

21
15

2
nvT

2a25
15

2

nT

m
~112a2!, ~112!

where integration over the angles has been performed
the integral

E
0

`

exp~2x2!x2kdx5
~2k21!!!

2k11
Ap ~113!

was used. Very similar calculations give the second term
Eq. ~111!:

15

4
nvT

2S a21

10
d81

a22

5
d82D . ~114!

Summing up Eqs.~112! and ~114!, we obtain the first term
on the right-hand side of Eq.~110!:

1

TE dVW 1SW •AW 52
15

2

nT

m S 11
21

10
a21d81

11

5
a22d82D .

~115!

The second term on the right-hand side of Eq.~110! may be
again written using the basic property of the collision in
gral @see Eq.~92!#:

2
1

TE dVW 1SW ~VW 1!•J(1)~ f (0),aW !

5
s2

T E dVW 1E dVW 2f (0)~VW 1!aW ~VW 2!•E deW

3Q~2VW 12•eW !uVW 12•eW uD@SW ~VW 1!1SW ~VW 2!#. ~116!

Using the dimensionless variables

SW ~VW !5vTTSW ~cW !5vTTS c22
5

2D cW ,

aW ~VW !52a1vTS n

vT
3D f~c!SW ~cW !, ~117!

and Eq.~109! for a1, we recast the last equation into th
form

2
1

TE dVW SW ~VW !•J(1)~ f (0),aW !52
4

5
kvTns2Vk .

~118!

The coefficientVk is defined by
4-12
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Vk[E dcW1E dcW2E deWQ~2cW12•eW !ucW12•eW u f̃ (0)~c1!

3f~c2!SW ~cW2!•D@SW ~cW1!1SW ~cW2!#. ~119!

This coefficient reads~see the Appendix!

Vk52~u01d8u12d82u2!, ~120!

where

u054A2pS 11
1

32
a2D ,

u15v0S 17

5
2

9

500
a2D ,

u25v1S 1817

440
2

1113

352 000
a2D . ~121!

Substituting Eqs.~115!, ~118!, and~120! into Eq. ~110! and
using Eq.~29! for z (0), we arrive at

T
]

]T
kT3/2~v0d82v2d821••• !

5
2

5
kT3/2~u01d8u12d82u21••• !

2
15

4

T3/2

s2
A T

2mS 11
21

10
a21d81

11

5
a22d82D .

~122!

We solve this equation with the ansatz

k5k0~11d8k̃11d82k̃21••• !, ~123!

where

k05
75

64s2
A T

pm
~124!

is the Enskog thermal conductivity for a gas of elastic p
ticles. Substituting Eq.~123! into Eq. ~122! and equating
terms of the same order ind8, we obtain the coefficients

k̃15
487

6400

A2pv0

p
'0.393,

k̃25
1

p S 2 872 113

51 200 000
v0

21
78 939

140 800
A2pv1D'4.904.

~125!

Hence, the coefficient of thermal conductivity for a granu
gas of viscoelastic particles reads in adiabatic approxima

k5
75

64s2
A T

pm
~110.393d814.904d821••• !.

~126!

Similar to the viscosity coefficient, the coefficient of therm
conductivity of a granular gas of viscoelastic particles
06130
-

r
n

l
-

veals an additional temperature dependence as comp
with gases of simplified particles where«5const.

The evaluation of the coefficientm may be performed in
the same way ask, i.e., choosingbW in the form

bW 52
b1

T
SW ~VW ! f M~V!, ~127!

with the velocity independent coefficientb1. The only dif-
ference is that the expansion ofm in terms of the dissipative
parameterd8 lacks the term in zeroth order sincem vanishes
in the elastic limit. Since the calculations are complete
analogous to that fork, we present here only the final resu

m5
k0T

n
~d8m̃11d82m̃21••• !, ~128!

with

m̃15
19

80

v0A2p

p
'1.229,

m̃25
1

p S 58 813

640 000
v0

21
1

40
A2pv1D'1.415. ~129!

Thus, the coefficientm reads in adiabatic approximation

m5
k0T

n
~1.229d811.415d821••• !. ~130!

Finally, using the coefficients

a15
2m

5nT
k, b15

2m

5T2
m, g052

1

nT
h ~131!

~the result forb1 may be derived analogously as fora1) in
the relations Eqs.~107!, ~127!, and ~84! for aW , bW , g i j , we
obtain an expression for the first-order distribution functi
f (1), which depends linearly on the field gradients accord
to Eq. ~63!.

VI. COOLING RATE

As it was already mentioned the cooling ratez in the
zero-order approximation with respect to the fields gradie
z (0) coincides with that for the homogeneous cooling sta
Eq. ~29!, while the first-order coefficientz (1) is zero due to
the different symmetry of the functionsf (0)(VW ) and f (1)(VW ).
For consistency of the hydrodynamic equations, which c
tain the second-order terms with respect to the fields gr
ents, it is necessary to include the second-order terms
the cooling ratez @10#. These coefficients appear in th
second-order cooling coefficient

z (2)5
s2m

12nTE dvW 1E dvW 2E deWQ~2vW 12•eW !uvW 12•eW u

3@ f (1)~vW 1! f (1)~vW 2!12 f (0)~vW 1! f (2)~vW 2!#

3~vW 12•eW !2~12«2!, ~132!
4-13
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where the dependence onrW and ont is suppressed for brevity
From the symmetry requirements,z (2) depends on the field
gradients as follows@10#:

z (2)5z1¹2T1z2¹2n1z3~¹W T!21z4~¹W T!2

1z5~¹W T!•~¹W n!1z6F ~¹iuj !~¹iuj !1~¹iuj !~¹jui !

2
2

d
~¹W •uW !2G1z7~¹W •uW !2, ~133!

whered53 is the system dimension and the coefficientszk
(k51,2, . . . ,7) may becalculated, provided the function
f (0), f (1) ,and f (2) are known. Whilef (0) and f (1) are given,
respectively, by Eq.~50! and Eq.~63! with Eqs.~84!, ~107!,
~127!, and ~131!, the function f (2) is still to be found. To
derive f (2) one needs to solve the second-order equation
the Chapman-Enskog perturbation scheme:

] (0)f (2)

]t
1J(2)~ f (0), f (2)!1

] (2)f (0)

]t

5I ~ f (1), f (1)!2F] (1)

]t
1uW •¹W 1VW •¹W G f (1).

~134!

Here, we consider only the part of the functionf (2) which
contributes toz (2). This part, which we denotef z

(2) does not
contain vectorial or traceless tensorial functions of the vel
ity, since this part of the function will vanish after integratio
overvW 1 , vW 2 , eW in Eq. ~132! @10#. Therefore,f z

(2) has the form

f z
(2)5B1¹2T1B2¹2n1B3~¹W T!21B4~¹W T!2

1B5~¹W T!•~¹W n!1B6F ~¹iuj !~¹iuj !

1~¹iuj !~¹jui !2
2

3
~¹W •uW !2G1B7~¹W •uW !2, ~135!

where the coefficientsBk are scalar functions ofn, T, and
V2. Moreover, they must be orthogonal to 1,VW , and V2,
according to the Chapman-Enskog scheme@5#. Therefore,
their lowest-order Sonine expansion reads@10#

Bk~n,T,V!5bk~n,T!S2~c2! f M~V!, ~136!

where, as previously,c5V/vT . With the substitute Eq
~136!, we can express the coefficientszk in terms ofbk . For
example, the first two coefficientsz1 andz2 read

z15BVz
(1)b1 , z25BVz

(1)b2 , ~137!

whereB has been defined in Eq.~13! andVz
(1) is the numeri-

cal coefficient
06130
of

-

Vz
(1)[E dcW1E dcW2E deWQ~2cW12•eW !ucW12•eW u

3 f̃ (0)~c1!f~c2!~cW12•eW !2S2~c2
2!~12«2!. ~138!

This coefficient reads~see the Appendix!

Vz
(1)5S 12

25
1

21

625
a2Dv0d82S 119

200
1

4641

160 000
a2Dv1d82.

~139!

The coefficientsz1 and z2, which correspond to the linea
part ofz (2) with respect to fields gradients have been deriv
in Ref. @10# for the case of a constant restitution coefficie
The authors conclude that these coefficients may be
glected for«5const, if the inelasticity is not large. Follow
ing the approach in Ref.@10#, we briefly sketch the deriva
tion of these coefficients for the case of viscoelastic partic
more detail may be found in Ref.@33#, where the derivation
of other coefficientszk , k53, . . . ,7 isalso given.

Substituting into Eq.~134! the expression forf z
(2) , Eq.

~135!, and for f (1), Eq. ~63!, and collecting terms corre
sponding to the same field gradients, we obtain a system
equations for the functionsBk(n,T,V) k51, . . . ,7. The
coefficientsB1 and B2 correspond to the linear part off z

(2)

with respect to the fields gradients. Therefore, only the te
VW •¹W f (1) on the right-hand side of Eq.~134! contributes to
the equations forB1 andB2 @10#. Moreover, due to symme
try requirements only the part

2
2m

15T3n
~k¹2T1m¹2n!SW •VW f M ~140!

of the termVW •¹W f (1) contributes to the cooling coefficien
z (2) and should be taken into account~see Refs.@10,33# for
detail!. The equations forB1 and B2 then decouple from
those for the other coefficientsBk :

z (0)T
]B1

]T
1S z (0)1T

]z (0)

]T DB11I ~ f (0),B1!

1I ~B1 , f (0)!1z1T
] f (0)

]T

5kS 2

3nT
T

] f (0)

]T
2

2m

15T3n
f MSW •VW D ~141!

and

z (0)T
]B2

]T
1I ~ f (0),B2!1I ~B2 , f (0)!1z2T

] f (0)

]T

31
T

n
z (0)B15mS 2

3nT
T

] f (0)

]T
2

2m

15T3n
f MSW •VW D .

~142!

Equations~141! and ~142! are similar to the correspondin
equations in Ref.@10# for «5const, whereT]z (0)/]T
4-14
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5z(0)/2. We substitute Eq.~136! into the above equations
multiply them byV4 and integrate overVW . As a result, we
arrive at equations for the coefficientsb1 andb2,

b1S 3z (0)

B
1

T

B

]z (0)

]T
1

2

3
Vz

(1)H~a2!1
4

15
Vz

(2)D
1

z (0)T

B

]b1

]T
5

4k

3BnT
@H~a2!27#,

b2S 2z (0)

B
1

2

3
Vz

(1)H~a2!1
4

15
Vz

(2)D1
z (0)T

B

]b2

]T

1
Tz (0)

Bn
b15

4m

3BnT
@H~a2!27#, ~143!

where we use the notations

H~a2![11a21
1

2
T

]a2

]T
, ~144!

and introduce the coefficient

Vz
(2)[E dcW1E dcW2E deWQ~2cW12•eW !ucW12•eW u f̃ (0)~c1!

3f~c2!S2~c2
2!D~c1

41c2
4!. ~145!

The calculation of this coefficient~see the Appendix! yields

Vz
(2)524A2pS 11

1

16
a2D2S 903

125
2

567

6250
a2Dv0d8

1S 476 973

44 000
2

4 459 833

35 200 000
a2Dv1d82. ~146!

Equations~143! are similar to the analogous equations
Ref. @10#.

We seek the solution forb1 , b2 as expansions in terms o
d8:

b15
k0

BnT
~d8b1,11d82b1,21••• !,

b25
k0

Bn2
~d8b2,11d82b2,21••• !. ~147!

Substituting Eqs.~147! into Eqs.~143! together with expres-
sions~100! and~123! for h andk, Eq. ~28! for a2 and Eqs.
~139! and ~146! for Vz

(1/2) and equating terms of the sam
order ind8, we find the coefficientsb1,1/2 andb2,1/2. These
coefficients are then used to find the cooling coefficientsz1
andz2, according to Eq.~137!. The result reads

z15
1747

80 000

v0
2

p
d82

k0

nT
, ~148!

z25
19

1000

v0
2

p
d82

k0

n2
. ~149!
06130
As we see from the last equations these coefficients ar
the second order with respect to the small parameterd8.

Very similar considerations may be performed to der
the other coefficientsbk , k53, . . . ,7 andcorrespondingly
the cooling coefficientszk . The computation is straightfor
ward but rather lengthy and we wish to give here only t
final results, referring for detail to Ref.@33#:

z35F 96

3125
v0d81S 108 759

6 250 000
A2

p
v0

2

2
357

12 500
v1D d82GBmk0

2

3n2T3
, ~150!

z55
228

15 625
A2

p
v0

2d82S Bmk0
2

3n3T2D , ~151!

z65F358

225
v0d81S 979 549

5 400 000
A2

p
v0

22
253

150
v1D

3d82G Bh0

3n2T2
, ~152!

z752F5152

675
v0d81S 771 053

900 000
A2

p
v0

22
1786

225
v1D

3d82G Bh0

3n2T2
. ~153!

The second-order coefficientz4 is not given, since it is of the
order ofz4;O(d83). It is interesting to note that while the
coefficientsz1 , z2 , z4, andz5 do not have terms linear in
d8, the other coefficientszk do have the linear contribution
We wish also to emphasize that for practical applications
second-order cooling coefficientz (2) is unimportant since it
depends on the product of two small values, on the diss
tive parameterd8, and on second-order gradients.

VII. TWO-DIMENSIONAL GRANULAR GAS

So far we have restricted ourselves to the thr
dimensional systems although the calculations are iden
for general dimensiond. Of particular interest is the cased
52. Since molecular dynamics simulations are frequen
performed for the two-dimensional systems, in this sect
we present the results for the two-dimensional gases of
coelastic particles. We wish to stress that these systems
in fact, quasi-two-dimensional, since we still use the coe
cient of restitution Eq.~1! for colliding spheres. Hence, w
assume that the motion of the spherical particles of the ga
restricted to a two-dimensional surface.

The hydrodynamic equations for the two-dimension
gases have the form

]n

]t
1¹W •~nuW !50,
4-15
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]uW

]t
1uW •¹W uW 1~nm!21¹W • P̂50,

]T

]t
1uW •¹W T1

1

n
~Pi j ¹jui1¹W •qW !1zT50, ~154!

with the pressure tensor and the heat flux

Pi j 5nTd i j 2h~¹iuj1¹jui2d i j ¹W •uW !,

qW 52k¹W T2m¹W n. ~155!

Correspondingly, the transport coefficients read

h5h0~11d8h̃11d82h̃21••• !, ~156!

whered8(t)5d@2T(t)/T0#1/10 and

h05
1

2s
AmT

p
,

h̃15
29

640

A2p

p
v0'0.234,

h̃25
111

160 000

v0
2

p
1

569

14 080

v1A2p

p
'0.308. ~157!

Similarly,

k5k0~11d8k̃11d82k̃21••• !, ~158!

with

k05
2

s
A T

pm
,

k̃152
433

3200

A2pv0

p
'20.700,

k̃25
1

p S 1 749 573

12 800 000
v0

21
95 619

70 400
A2pv1D'11.89

~159!

and

m5
k0T

n
~d8m̃11d82m̃21••• !,

m̃15
7

20

v0A2p

p
'1.811,

m̃25
1

p S 2
7411

80 000
v0

21
7

40
A2pv1D'0.056. ~160!

The zero-order cooling coefficientz (0) reads for a two-
dimensional gas of viscoelastic particles
06130
z (0)5A2T

m
nsS 1

2
v0d82ṽ2d821••• D ,

ṽ25
1

2
v11

9A2p

500p
v0

2'5.246, ~161!

with the numerical constantsv0/1 given by Eq. ~20!. The
corresponding second-order cooling coefficients are

z15
69

1600

v0
2

p
d82

k0

nT
, ~162!

z25
21

250

v0
2

p
d82

k0

n2
, ~163!

z35F 3

125
v0d81S 75 759

4 000 000
A2

p
v0

2

2
357

16 000
v1D d82GBmk0

2

2n2T3
, ~164!

z55
21

1250
A2

p
v0

2d82
Bmk0

2

2n3T2
, ~165!

z65F77

50
v0d82S 33 071

400 000
A2

p
v0

21
659

400
v1D d82G Bh0

2n2T2
,

~166!

z752F207

50
v0d82S 149 061

400 000
A2

p
v0

2

1
1739

400
v1D d82G Bh0

2n2T2
. ~167!

As previously, we do not write the second-order coefficie
z4;O(d83).

VIII. RESULTS AND DISCUSSION

We have derived the hydrodynamics of granular gase
viscoelastic particles. Collisions of viscoelastic particles
characterized by an impact velocity dependent coefficien
restitution. We have used the Chapman-Enskog approac
gether with an adiabatic approximation for the velocity d
tribution function, which assumes that the shape of the
locity distribution function follows adiabatically the
decaying temperature. We have compared the numerica
lutions for temperatureT(t) and for the second Sonine coe
ficient a2(t) with the corresponding adiabatic approxim
tions and have found good agreement up to intermed
dissipation. To derive the hydrodynamic equations and tra
port coefficients from the Boltzmann equation we used
standard scheme and account for the additional time de
dence of the basic solution. We take into account the ti
dependence not only due to the thermal velocity, as fo«
5const, but also due to the evolution of the shape of
4-16
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distribution function as given for gases of viscoelastic p
ticles.

Transport coefficients and the cooling coefficient for
lute granular gases of viscoelastic particles read

h5h0~11d8h̃11d82h̃21••• !, ~168!

k5k0~11d8k̃11d82k̃21••• !, ~169!

m5
k0T

n
~d8m̃11d82m̃21••• !, ~170!

z (0)5
nT

h0
~d8z̃11d82z̃21••• !, ~171!

whereh0 andk0 are the Enskog values for the viscosity a
the coefficient of thermal conductivity, andd8 is the time-
dependent dissipative parameter. The numerical coeffici
h̃1/2, k̃1/2, m̃1/2, andz̃1/2 are given in Table I. We do not give
the corresponding data for the second-order cooling co
cient, since for practical applications it may be neglected

The dependence on temperature and, therefore, on tim
the kinetic coefficients Eqs.~168!–~171! differs significantly
from the time dependence of the corresponding coefficie
for granular gases of particles which collide with a simplifi
collisional model«5const.

Let us illustrate this with some representative examp
We use characteristic parameters of typical granular sys
as considered in Ref.@34#: A5231025 s, Y/(12n2)
58 GPa, R50.05 m, m50.130 kg, and take the averag
initial velocity v051021 m/s. These parameters yieldd
50.15, which allows to neglect termsO(d3) and which cor-
respond to the initial restitution coefficient for the avera
velocity « init50.79. Using the above theory, we find the va
ues h/h051.079, k/k051.187, m/(k0T/n)50.232, and
z (1)/(nT/h0)50.130 at initial temperatureT5T0. For the
simplified assumption of a constant restitution coefficie
these quantities do not depend on time, but only on the va
of «. As the gas evolves, its temperature decreases and
take the temperature after some time asT51025T0, we ob-
tain for the above quantities:h/h051.024, k/k051.032,
m/(k0T/n)50.065, andz (0)/(nT/h0)50.050.

As we see from these estimates, the above reduced q
tities are not constant as for the case of«5const, but instead
change in time. However, while the quantityh/h0 changes
only by about 6% andk/k0 by only 15%, the other two
variables change by a factor of 3.5 and a factor of 2.6,

TABLE I. Numerical coefficients for Eqs.~168!–~171!.

3d 2d 3d 2d

h̃1
0.483 0.234 h̃2

0.094 0.309

k̃1
0.393 20.700 k̃2

4.904 11.893

m̃1
1.229 1.811 m̃2

1.415 0.056

z̃1
1.078 1.294 z̃2

21.644 22.093
06130
-

ts
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spectively. These time dependencies affect the global be
ior of force-free granular gases@35#.

Under mild preconditions the presented formalism for t
derivation of the hydrodynamic equations and the transp
coefficients may be applied also to gases of particles wh
collision is described by a different impact velocity depe
dence than given for viscoelastic particles.

APPENDIX: DERIVATION OF THE COEFFICIENTS Vh ,
Vk , AND Vz

„1Õ2…

For the evaluation of the numerical coefficient Eq.~96!,
defined by

Vh[E dcW1E dcW2E deWQ~2cW12•eW !ucW12•eW u f̃ (0)~c1!

3f~c2!Di j ~cW2!D@Di j ~cW1!1Di j ~cW2!#, ~A1!

we need the factor

Di j ~cW2!D@Di j ~cW1!1Di j ~cW2!#

5~cW18•cW2!21~cW28•cW2!22~cW1•cW2!2

2~cW2•cW2!22 1
3 c2

2~c18
21c28

22c1
22c2

2!. ~A2!

Similarly, for the coefficient

Vk[E dcW1E dcW2E deWQ~2cW12•eW !ucW12•eW u f̃ (0)~c1!

3f~c2!SW ~cW2!•D@SW ~cW1!1SW ~cW2!#, ~A3!

given by Eq.~119!, we need

SW ~cW2!•D@SW ~cW1!1SW ~cW2!#

5S c2
22

5

2D @~cW18•cW2!~c18!21~cW28•cW2!~c28!2

2~cW1•cW2!c1
22~cW2•cW2!c2

2#. ~A4!

With ~A2! and ~A4!, we write for the coefficientVh ,

Vh5E dcW1E dcW2E deWQ~2cW12•eW !ucW12•eW u f̃ (0)~c1!f~c2!

3F ~cW18•cW2!21~cW28•cW2!22~cW1•cW2!22~cW2•cW2!2

2
1

3
c2

2~c18
21c28

22c1
22c2

2!G , ~A5!

and for the coefficientVk ,
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Vk5E dcW1E dcW2E deWQ~2cW12•eW !ucW12•eW u f̃ (0)~c1!f2~c2!

3S c2
22

5

2D @~cW18•cW2!~c18!21~cW28•cW2!~c28!2

2~cW1•cW2!c1
22~cW2•cW2!c2

2#. ~A6!

The coefficientsVz
(1) andVz

(2) have similar structure:

Vz
(1)5E dcW1E dcW2E deWQ~2cW12•eW !ucW12•eW u f̃ (0)

3~c1!f~c2!~cW12•eW !2S2~c2
2!~12«2! ~A7!

and

Vz
(2)5E dcW1E dcW2E deWQ~2cW12•eW !ucW12•eW u f̃ (0)~c1!

3f~c2!S2~c2
2!~c18

41c28
42c1

42c2
4!. ~A8!

The precollision velocitiescW1 , cW2 as well as after-collision
velocitiescW18 , cW28 can be expressed in terms of the center

mass velocityCW 5(cW11cW2)/2 and the relative velocitycW12

5cW12cW2 before the collision

cW15CW 1 1
2 cW12,

cW25CW 2 1
2 cW12,

cW185CW 1 1
2 cW122

1
2 ~11«!~cW12•eW !eW ,

cW285CW 2 1
2 cW121

1
2 ~11«!~cW12•eW !eW . ~A9!

The coefficient of restitution is expressed in terms of
relative velocitycW12 by

«512C1d8~ t !ucW12•eW u1/51 3
5 C1

2d82~ t !ucW12•eW u2/51•••.
~A10!

The second Sonine polynomial in the distribution functio

f̃ (0)~c1!5f~c1!@11a2S2~c1
2!#, ~A11!

reads in terms ofCW andcW12,

S2~c1
2!5

C4

2
1

1

2
~CW •cW12!

21
1

32
c12

4 1C2~CW •cW12!1
1

4
C2c12

2

1
1

4
c12

2 ~CW •cW12!2
5

2
C2,2

5

2
~CW •cW12!2

5

8
c12

2 1
15

8
.

~A12!

If we replace all factors in the integrands of Eqs.~A5!–~A8!

by the corresponding expressions in terms ofCW andcW12, we
observe thatVh , Vk , andVz

(1/2) may be written as a sum o
integrals of the structure
06130
f

e

Jk,l ,m,n,p,a5E dcW12E dCW E deWQ~2cW12•eW !ucW12•eW u11a

3f~c12!f~C!Ckc12
l ~CW •cW12!

m~CW •eW !n~cW12•eW !p.

~A13!

The solution of this integral, in general, dimensiond reads
@24# for n50

Jk,l ,m,0,p,a5~21!p@11~21!m#2l 1m1p1a11Vd
21

3bp1a11bmgk1mg l 1m1p1a11 , ~A14!

for n51

Jk,l ,m,1,p,a5~21!p11@11~21!m11#2l 1m1p1a11Vd
21

3bp1a12bm11gk1m11g l 1m1p1a11 , ~A15!

and forn52

Jk,l ,m,2,p,a5~21!p@11~21!m#2l 1m1p1a11

3@~d21!Vd#21gk1m12g l 1m1p1a11

3@~dbp1a132bp1a11!bm12

1~bp1a112bp1a13!bm#, ~A16!

where

Vd5
2pd/2

GS d

2D ~A17!

is the surface of ad-dimensional unit sphere. The coefficien
bm , gm read

bm5p (d21)/2

GS m11

2 D
GS m1d

2 D ,

gm522m/2

GS m1d

2 D
GS d

2D . ~A18!

Following this procedure, we obtain the desired coefficie
as given by Eqs.~97!, ~120!, ~139!, and~146!.

The evaluation of the sums which lead to the factorsVh ,
Vk , and Vz

(1/2) is straightforward, however, very lengthy
They can be calculated by symbolic algebra@36#.
4-18



e
.

f
e,

J

ic

. E

of

r,

. E

s re-
ons

n

n,

HYDRODYNAMICS AND TRANSPORT COEFFICIENTS . . . PHYSICAL REVIEW E 67, 061304 ~2003!
@1# Constitutive Modelling of Granular Materials, edited by D.
Kolymbas~Springer, Berlin, 2000!.

@2# Continuous and Discontinuous Modelling of Cohesiv
Frictional Materials, edited by P.A. Vermeer, S. Diebels, W
Ehlers, H. Herrmann, S. Luding, and E. Ramm~Springer, Ber-
lin, 2000!.

@3# Granular Gases, edited by T. Po¨schel and S. Luding, Lecture
Notes in Physics Vol. 564~Springer, Berlin, 2001!.

@4# H. Grad, Commun. Pure Appl. Math.2, 331 ~1949!.
@5# S. Chapman and T.G. Cowling,The Mathematical Theory o

Non-uniform Gases~Cambridge University Press, Cambridg
1970!.

@6# C.K.K. Lun, S.B. Savage, D.J. Jeffrey, and N. Chepurniy,
Fluid Mech.140, 223 ~1984!.

@7# J.T. Jenkins and M.W. Richman, Arch. Particle Mechan
Analysis87, 355 ~1985!.

@8# A. Goldshtein and M. Shapiro, J. Fluid Mech.282, 75 ~1995!.
@9# N. Sela and I. Goldhirsch, J. Fluid Mech.361, 41 ~1998!.

@10# J.J. Brey, J.W. Dufty, C.S. Kim, and A. Santos, Phys. Rev
58, 4638~1998!.

@11# J.J. Brey, M.J. Ruiz-Montero, and D. Cubero, Phys. Rev. E60,
3150 ~1999!.

@12# V. Garzo and J.W. Dufty, Phys. Rev. E59, 5895~1999!.
@13# J.J. Brey and D. Cubero, in Ref.@3#, p. 59.
@14# W. Goldsmit, Impact: The Theory and Physical Behavior

Colliding Solids~Arnold, London, 1960!.
@15# F.G. Bridges, A. Hatzes, and D.N.C. Lin, Nature~London!

309, 333 ~1984!.
@16# G. Kuwabara and K. Kono, Jpn. J. Appl. Phys., Part 126, 1230

~1987!.
@17# R. Ramı´rez, T. Po¨schel, N.V. Brilliantov, and T. Schwage

Phys. Rev. E60, 4465~1999!.
06130
-

.

s

@18# H. Hertz, J. Reine Angew. Math.92, 156 ~1882!.
@19# N.V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Po¨schel,

Phys. Rev. E53, 5382~1996!.
@20# T. Schwager and T. Po¨schel, Phys. Rev. E57, 650 ~1998!.
@21# S.E. Esipov and T. Po¨schel, J. Stat. Phys.86, 1385~1997!.
@22# T.P.C. van Noije and M.H. Ernst, Granular Matter1, 57

~1998!.
@23# N.V. Brilliantov and T. Po¨schel, Phys. Rev. E61, 2809~2000!.
@24# N.V. Brilliantov and T. Po¨schel, Phys. Rev. E61, 5573~2000!.
@25# R. Ramı´rez, D. Risso, R. Soto, and C.P. Cordero, Phys. Rev

62, 2521~2000!.
@26# C.K.K. Lun and S.B. Savage, Acta Mech.63, 15 ~1986!.
@27# N. Brilliantov and T. Po¨schel, in Ref.@3#, p. 100.
@28# M. Huthmann, J. Orza, and R. Brito, Granular Matter2, 189

~2000!.
@29# I. Goldhirsch, inGranular Gases~Ref. @3#!, p. 79.
@30# It has been shown that some processes in granular gase

quire the Burnett level to derive a consistent set of equati
@9,29#.

@31# This may be directly checked using Eq.~63! for f (1).
@32# In a more general approach,g i j is represented as an expansio

in orthogonal polynomials, with Eq.~84! being the first-order
term @5#.

@33# N.V. Brilliantov and T. Po¨schel~unpublished!.
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